scholarly journals Noise-cancelling repeat finder: uncovering tandem repeats in error-prone long-read sequencing data

2019 ◽  
Vol 35 (22) ◽  
pp. 4809-4811 ◽  
Author(s):  
Robert S Harris ◽  
Monika Cechova ◽  
Kateryna D Makova

Abstract Summary Tandem DNA repeats can be sequenced with long-read technologies, but cannot be accurately deciphered due to the lack of computational tools taking high error rates of these technologies into account. Here we introduce Noise-Cancelling Repeat Finder (NCRF) to uncover putative tandem repeats of specified motifs in noisy long reads produced by Pacific Biosciences and Oxford Nanopore sequencers. Using simulations, we validated the use of NCRF to locate tandem repeats with motifs of various lengths and demonstrated its superior performance as compared to two alternative tools. Using real human whole-genome sequencing data, NCRF identified long arrays of the (AATGG)n repeat involved in heat shock stress response. Availability and implementation NCRF is implemented in C, supported by several python scripts, and is available in bioconda and at https://github.com/makovalab-psu/NoiseCancellingRepeatFinder. Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Author(s):  
Robert S. Harris ◽  
Monika Cechova ◽  
Kateryna D. Makova

ABSTRACTSummaryTandem DNA repeats can be sequenced with long-read technologies, but cannot be accurately deciphered due to the lack of computational tools taking high error rates of these technologies into account. Here we introduce Noise-Cancelling Repeat Finder (NCRF) to uncover putative tandem repeats of specified motifs in noisy long reads produced by Pacific Biosciences and Oxford Nanopore sequencers. Using simulations, we validated the use of NCRF to locate tandem repeats with motifs of various lengths and demonstrated its superior performance as compared to two alternative tools. Using real human whole-genome sequencing data, NCRF identified long arrays of the (AATGG)n repeat involved in heat shock stress response.Availability and implementationNCRF is implemented in C, supported by several python scripts. Source code, under the MIT open source license, and simulation data are available at https://github.com/makovalab-psu/NoiseCancellingRepeatFinder, and also in bioconda.


Author(s):  
Eric S Tvedte ◽  
Mark Gasser ◽  
Benjamin C Sparklin ◽  
Jane Michalski ◽  
Carl E Hjelmen ◽  
...  

Abstract The newest generation of DNA sequencing technology is highlighted by the ability to generate sequence reads hundreds of kilobases in length. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have pioneered competitive long read platforms, with more recent work focused on improving sequencing throughput and per-base accuracy. We used whole-genome sequencing data produced by three PacBio protocols (Sequel II CLR, Sequel II HiFi, RS II) and two ONT protocols (Rapid Sequencing and Ligation Sequencing) to compare assemblies of the bacteria Escherichia coli and the fruit fly Drosophila ananassae. In both organisms tested, Sequel II assemblies had the highest consensus accuracy, even after accounting for differences in sequencing throughput. ONT and PacBio CLR had the longest reads sequenced compared to PacBio RS II and HiFi, and genome contiguity was highest when assembling these datasets. ONT Rapid Sequencing libraries had the fewest chimeric reads in addition to superior quantification of E. coli plasmids versus ligation-based libraries. The quality of assemblies can be enhanced by adopting hybrid approaches using Illumina libraries for bacterial genome assembly or polishing eukaryotic genome assemblies, and an ONT-Illumina hybrid approach would be more cost-effective for many users. Genome-wide DNA methylation could be detected using both technologies, however ONT libraries enabled the identification of a broader range of known E. coli methyltransferase recognition motifs in addition to undocumented D. ananassae motifs. The ideal choice of long read technology may depend on several factors including the question or hypothesis under examination. No single technology outperformed others in all metrics examined.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chong Chu ◽  
Rebeca Borges-Monroy ◽  
Vinayak V. Viswanadham ◽  
Soohyun Lee ◽  
Heng Li ◽  
...  

AbstractTransposable elements (TEs) help shape the structure and function of the human genome. When inserted into some locations, TEs may disrupt gene regulation and cause diseases. Here, we present xTea (x-Transposable element analyzer), a tool for identifying TE insertions in whole-genome sequencing data. Whereas existing methods are mostly designed for short-read data, xTea can be applied to both short-read and long-read data. Our analysis shows that xTea outperforms other short read-based methods for both germline and somatic TE insertion discovery. With long-read data, we created a catalogue of polymorphic insertions with full assembly and annotation of insertional sequences for various types of retroelements, including pseudogenes and endogenous retroviruses. Notably, we find that individual genomes have an average of nine groups of full-length L1s in centromeres, suggesting that centromeres and other highly repetitive regions such as telomeres are a significant yet unexplored source of active L1s. xTea is available at https://github.com/parklab/xTea.


Author(s):  
David Porubsky ◽  
◽  
Peter Ebert ◽  
Peter A. Audano ◽  
Mitchell R. Vollger ◽  
...  

AbstractHuman genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.


2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i75-i83 ◽  
Author(s):  
Alla Mikheenko ◽  
Andrey V Bzikadze ◽  
Alexey Gurevich ◽  
Karen H Miga ◽  
Pavel A Pevzner

Abstract Motivation Extra-long tandem repeats (ETRs) are widespread in eukaryotic genomes and play an important role in fundamental cellular processes, such as chromosome segregation. Although emerging long-read technologies have enabled ETR assemblies, the accuracy of such assemblies is difficult to evaluate since there are no tools for their quality assessment. Moreover, since the mapping of error-prone reads to ETRs remains an open problem, it is not clear how to polish draft ETR assemblies. Results To address these problems, we developed the TandemTools software that includes the TandemMapper tool for mapping reads to ETRs and the TandemQUAST tool for polishing ETR assemblies and their quality assessment. We demonstrate that TandemTools not only reveals errors in ETR assemblies but also improves the recently generated assemblies of human centromeres. Availability and implementation https://github.com/ablab/TandemTools. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3874-3876 ◽  
Author(s):  
Sergio Arredondo-Alonso ◽  
Martin Bootsma ◽  
Yaïr Hein ◽  
Malbert R C Rogers ◽  
Jukka Corander ◽  
...  

Abstract Summary Plasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environments and hosts. Short-read whole-genome sequencing data are often applied to large-scale bacterial comparative genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inability to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph information and network partitioning based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short-read sequence data. Availability and implementation Gplas is written in R, Bash and uses a Snakemake pipeline as a workflow management system. Gplas is available under the GNU General Public License v3.0 at https://gitlab.com/sirarredondo/gplas.git. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Einar Gabbasov ◽  
Miguel Moreno-Molina ◽  
Iñaki Comas ◽  
Maxwell Libbrecht ◽  
Leonid Chindelevitch

AbstractThe occurrence of multiple strains of a bacterial pathogen such as M. tuberculosis or C. difficile within a single human host, referred to as a mixed infection, has important implications for both healthcare and public health. However, methods for detecting it, and especially determining the proportion and identities of the underlying strains, from WGS (whole-genome sequencing) data, have been limited.In this paper we introduce SplitStrains, a novel method for addressing these challenges. Grounded in a rigorous statistical model, SplitStrains not only demonstrates superior performance in proportion estimation to other existing methods on both simulated as well as real M. tuberculosis data, but also successfully determines the identity of the underlying strains.We conclude that SplitStrains is a powerful addition to the existing toolkit of analytical methods for data coming from bacterial pathogens, and holds the promise of enabling previously inaccessible conclusions to be drawn in the realm of public health microbiology.Author summaryWhen multiple strains of a pathogenic organism are present in a patient, it may be necessary to not only detect this, but also to identify the individual strains. However, this problem has not yet been solved for bacterial pathogens processed via whole-genome sequencing. In this paper, we propose the SplitStrains algorithm for detecting multiple strains in a sample, identifying their proportions, and inferring their sequences, in the case of Mycobacterium tuberculosis. We test it on both simulated and real data, with encouraging results. We believe that our work opens new horizons in public health microbiology by allowing a more precise detection, identification and quantification of multiple infecting strains within a sample.


2017 ◽  
Author(s):  
David Eccles ◽  
Jodie Chandler ◽  
Mali Camberis ◽  
Benard Henrissat ◽  
Sergey Koren ◽  
...  

AbstractEukaryotic genome assembly remains a challenge in part because of the prevalence of complex DNA repeats. This is a particularly acute problem for holocentric nematodes because of the large number of satellite DNA sequences found throughout their genomes. These have been recalcitrant to most genome sequencing methods. At the same time, many nematodes are parasites and some represent a serious threat to human health. There is a pressing need for better molecular characterization of animal and plant parasitic nematodes. The advent of long-read DNA sequencing methods offers the promise of resolving complex genomes. Using Nippostrongylus brasiliensis as a test case, applying improved base-calling algorithms and assembly methods, we demonstrate the feasibility of de novo genome assembly matching current community standards using only MinION long reads. In doing so, we uncovered an unexpected diversity of very long and complex DNA repeat sequences, including massive tandem repeats of tRNA genes. The method has the added advantage of preserving haplotypic variants and so has the potential to be used in population analyses.


2021 ◽  
Author(s):  
Jiru Han ◽  
Jacob E Munro ◽  
Anthony Kocoski ◽  
Alyssa E Barry ◽  
Melanie Bahlo

Short tandem repeats (STRs) are highly informative genetic markers that have been used extensively in population genetics analysis. They are an important source of genetic diversity and can also have functional impact. Despite the availability of bioinformatic methods that permit large-scale genome-wide genotyping of STRs from whole genome sequencing data, they have not previously been applied to sequencing data from large collections of malaria parasite field samples. Here, we have genotyped STRs using HipSTR in more than 3,000 Plasmodium falciparum and 174 Plasmodium vivax published whole-genome sequence data from samples collected across the globe. High levels of noise and variability in the resultant callset necessitated the development of a novel method for quality control of STR genotype calls. A set of high-quality STR loci (6,768 from P. falciparum and 3,496 from P. vivax) were used to study Plasmodium genetic diversity, population structures and genomic signatures of selection and these were compared to genome-wide single nucleotide polymorphism (SNP) genotyping data. In addition, the genome-wide information about genetic variation and other characteristics of STRs in P. falciparum and P. vivax have been made available in an interactive web-based R Shiny application PlasmoSTR (https://github.com/bahlolab/PlasmoSTR).


2021 ◽  
Author(s):  
Barış Ekim ◽  
Bonnie Berger ◽  
Rayan Chikhi

DNA sequencing data continues to progress towards longer reads with increasingly lower sequencing error rates. We focus on the problem of assembling such reads into genomes, which poses challenges in terms of accuracy and computational resources when using cutting-edge assembly approaches, e.g. those based on overlapping reads using minimizer sketches. Here, we introduce the concept of minimizer-space sequencing data analysis, where the minimizers rather than DNA nucleotides are the atomic tokens of the alphabet. By projecting DNA sequences into ordered lists of minimizers, our key idea is to enumerate what we call k-min-mers, that are k-mers over a larger alphabet consisting of minimizer tokens. Our approach, mdBG or minimizer-dBG, achieves orders-of magnitude improvement in both speed and memory usage over existing methods without much loss of accuracy. We demonstrate three uses cases of mdBG: human genome assembly, metagenome assembly, and the representation of large pangenomes. For assembly, we implemented mdBG in software we call rust-mdbg, resulting in ultra-fast, low memory and highly-contiguous assembly of PacBio HiFi reads. A human genome is assembled in under 10 minutes using 8 cores and 10 GB RAM, and 60 Gbp of metagenome reads are assembled in 4 minutes using 1 GB RAM. For pangenome graphs, we newly allow a graphical representation of a collection of 661,405 bacterial genomes as an mdBG and successfully search it (in minimizer-space) for anti-microbial resistance (AMR) genes. We expect our advances to be essential to sequence analysis, given the rise of long-read sequencing in genomics, metagenomics and pangenomics.


Sign in / Sign up

Export Citation Format

Share Document