scholarly journals Sperm migration, selection, survival and fertilizing ability in the mammalian oviduct

Author(s):  
Coline Mahé ◽  
Aleksandra Maria Zlotkowska ◽  
Karine Reynaud ◽  
Guillaume Tsikis ◽  
Pascal Mermillod ◽  
...  

Abstract In vitro fertilization (IVF) gives rise to embryos in a number of mammalian species and is currently widely used for assisted reproduction in humans and for genetic purposes in cattle. However, the rate of polyspermy is generally higher in vitro than in vivo and IVF remains ineffective in some domestic species like pigs and horses, highlighting the importance of the female reproductive tract for gamete quality and fertilization. In this review, the way the female environment modulates sperm selective migration, survival and acquisition of fertilizing ability in the oviduct is being considered under six aspects: (1) the utero-tubal junction which selects a sperm sub-population entering the oviduct; (2) the presence of sperm binding sites on luminal epithelial cells in the oviduct, which prolong sperm viability and plays a role in limiting polyspermic fertilization; (3) the contractions of the oviduct, which promote sperm migration toward the site of fertilization in the ampulla; (4) the regions of the oviduct, which play different roles in regulating sperm physiology and interactions with oviduct epithelial cells; (5) the time of ovulation and (6) the steroid hormonal environment which regulates sperm release from the luminal epithelial cells and facilitates capacitation in a finely orchestrated manner.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jean-Ju Chung ◽  
Kiyoshi Miki ◽  
Doory Kim ◽  
Sang-Hee Shim ◽  
Huanan F Shi ◽  
...  

We report that the Gm7068 (CatSpere) and Tex40 (CatSperz) genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of CatSperz reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.8 μm intervals along the flagellum. This disruption renders the proximal flagellum inflexible and alters the 3D flagellar envelope, thus preventing sperm from reorienting against fluid flow in vitro and efficiently migrating in vivo. Ejaculated CatSperz-null sperm cells retrieved from the mated female uterus partially rescue in vitro fertilization (IVF) that failed with epididymal spermatozoa alone. Human CatSperε is quadrilaterally arranged along the flagella, similar to the CatSper complex in mouse sperm. We speculate that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract.


Author(s):  
Chia-Hung Chou ◽  
Shee-Uan Chen ◽  
Chin-Der Chen ◽  
Chia-Tung Shun ◽  
Wen-Fen Wen ◽  
...  

Abstract Context A supraphysiological estradiol (E2) concentration after ovarian stimulation is known to result in lower embryo implantation rates in in vitro fertilization (IVF). Endometrial epithelial cells (EECs) apoptosis occurs after the stimulation with high E2 concentrations, and mitochondria play important roles in cell apoptosis. Objective To investigate the mitochondrial function in EECs after the stimulation with high E2 concentrations. Materials and Methods Human EECs were purified and cultured with different E2 concentrations (10-10, 10-9, 10-8, 10-7 M) in vitro, in which 10-7 M is supraphysiologically high. Eight-week-old female mouse endometrium was obtained 5.5 days after the injection of 1.25 IU or 20 IU equine chorionic gonadotropin (eCG), roughly during the embryo implantation window, to examine the in vivo effects of high E2 concentrations on mouse EECs. Results In vivo and in vitro experiments demonstrated decreased mitochondrial DNA contents and ATP formation after EECs were stimulated with supraphysiologically high E2 concentrations than those stimulated with a physiologic E2 concentration. Less prominent immunofluorescence mitochondrial staining, fewer mitochondria number under electron microscopy, lower JC-1 aggregate/monomer ratio, and greater reactive oxygen species (ROS) production were found after EECs were stimulated with supraphysiologically high E2 concentrations. The high E2-induced ROS production was reduced when EECs were pretreated with N-acetyl-cysteine (NAC) in vitro, but remained unchanged after the pretreatment with coenzyme Q10. Conclusion High E2 concentrations increase extra-mitochondrial ROS production in EECs and subsequently result in mitochondrial dysfunction.


1996 ◽  
Vol 8 (4) ◽  
pp. 581 ◽  
Author(s):  
RA Harrison

Capacitation, the process whereby spermatozoa are rendered capable of interacting with and fertilizing the egg, was discovered more than 40 years ago. However, our understanding of it is still far from satisfactory. Several factors conspire to obfuscate studies of capacitation mechanisms: the inherent functional heterogeneity of sperm populations, the range of functions used as parameters of capacitation (whence the endpoint of the process has become conceptually uncertain), and the several profound differences between model in vitro fertilization (IVF) systems and the situation in vivo in the female reproductive tract. Recent investigations in the author's laboratory have shown that bicarbonate/CO2, an essential component for successful IVF, causes rapid changes in lipid architecture of the sperm plasma membrane and slower changes in surface coating. These changes are accompanied by membrane destabilization and cell death. Evidence suggests that bicarbonate's actions are mediated through cyclic nucleotide signalling. Of particular note is the heterogeneity in rate of response to bicarbonate shown by individual cells in the sperm populations. Taken together with other observations, the findings suggest that capacitation is a series of positive destabilizing events that eventually lead to cell death. The 'capacitated' state would then be a window of destabilization within which spermatozoa can undergo a zona-induced acrosome reaction and display hyperactivated motility. Further along the destabilization pathway, spontaneous acrosome reactions would occur before total membrane degeneration. In vivo, capacitation would be a conflict between destabilization and sperm survival. Concentrations of bicarbonate are maintained low in the cauda epididymidis, where sperm survive for long periods, and one may speculate that hormonal control of local bicarbonate/CO2 in oviducal 'storage' sites in the female tract could allow 'safe' sequestering of live spermatozoa until around the time of ovulation; the environment may then change to produce a 'capacitating' effect, whence, due to the inherent functional heterogeneity of the sequestered population, small numbers of capacitated spermatozoa are released sequentially. In this way, a succession of spermatozoa in the correct physiological state may be provided for the freshly ovulated egg.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2858-2867 ◽  
Author(s):  
Myoungkun Jeoung ◽  
Sungeun Lee ◽  
Hee-kyung Hawng ◽  
Yong-Pil Cheon ◽  
Youn Kyung Jeong ◽  
...  

Endothelins were first identified as potent vasoactive peptides; however, diversity in the biological function of these hormones is now evident. We have identified a novel role for endothelins: a requirement for these peptides within the oviduct during fertilization and/or early embryo development. In vivo, treatment after ovulation with a dual endothelin receptor antagonist (tezosentan) decreased the number of two-cell embryos that could be collected from within the oviducts. In vitro fertilization experiments showed that gamete viability and their ability to fertilize were not affected by treatment with this antagonist, suggesting that the effect observed in vivo was mediated by the oviduct itself. Expression of mRNA for all three isoforms of the endothelins and both receptor subtypes was detectable within the oviduct. Expression of mRNA for endothelin-3 was regulated by gonadotropins in epithelial cells of the oviduct and increased specifically within the isthmus of this structure. Immunostaining revealed localization of both endothelin receptors A and B to the columnar epithelial cells within the oviduct, suggestive of a local role for endothelins in the regulation of epithelial function and ultimately oviductal secretions. A microarray analysis revealed three likely endothelin-regulated protein networks for future analysis: the TGFβ, IL-10, and CCAAT/enhancer-binding protein superfamilies. Overall, these results suggest a novel and requisite role for endothelins within the oviduct during fertilization and/or early embryo development.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Katarzyna Wojtanowicz-Markiewicz ◽  
Magdalena Kulus ◽  
Sandra Knap ◽  
Ievgenia Kocherova ◽  
Maurycy Jankowski ◽  
...  

Luminal epithelial cells are the first embryonic-maternal contact site undergoing very specific changes associated with reproductive processes. Cells prepare for embryo development by increasing their volume, with the help of aquaporins that provide a transcellular path of rapid water movement during the secretion and absorption of fluids, as well as connexins enabling the flow of inorganic ions and small molecules. In this work, we have examined how AQPs and Cx’s behave in luminal epithelium primary cell culture. Cells obtained from porcine specimen during slaughter were primarily in vitro cultured for 7 days. Their proliferation patterns were then analyzed using RTCA, with the expression of genes of interest evaluated with the use of immunofluorescence and RT-qPCR. The results of these changes of gene of interest expression were analyzed on each of the seven days of the porcine luminal primary cell culture. Our study showed that the significant changes were noted in the case of Cx43, whose level of protein expression and distribution increases after 120 hours of culture, when the cells enter the lag phase, and maintains an upward trend until the end of the culture. We noted an increase in AQP4, AQP7, AQP8, and AQP11 levels throughout the entire culture period, while the largest differences in expression were found in AQP3, AQP4, and AQP10. The obtained results could become a point of reference for further in vivo and clinical research. Experiments conducted with these proteins showed that they influence the endometrial fluid content during the oestrous cycle and participate in the process of angiogenesis, which intensifies during endometrial development.


2020 ◽  
Vol 102 (5) ◽  
pp. 1033-1044
Author(s):  
Dan Wang ◽  
Liping Cheng ◽  
Wenjuan Xia ◽  
Xiaofei Liu ◽  
Yueshuai Guo ◽  
...  

Abstract Fertilization is one of the fundamental biological processes, but so far, we still do not have a full understanding of the underlying molecular mechanism. We have identified a human acrosome protein, LY6/PLAUR domain containing 4 (LYPD4), expressed specifically in human testes and sperm, and conserved within mammals. Mouse Lypd4, also specific to the testis and sperm, is essential for male fertility. LYPD4 protein first appeared in round spermatids during acrosome biogenesis and became part of acrosomes during spermatogenesis and in mature sperm. Lypd4 knockout mice are infertile with normal sperm number and motility. Mutant sperm, however, failed to reach oviduct during sperm migration inside the female reproductive tract, leading to fertilization failure and infertility. In addition, Lypd4 mutant sperms were unable to fertilize denuded egg via IVF (in vitro fertilization) but could fertilize eggs within intact Cumulus-Oocyte Complex, supporting an additional role in sperm-zona interaction. Out of more than five thousand spermatozoa proteins identified by mass spectrometry analysis, only a small subset of proteins (26 proteins) was changed in the absence of LYPD4, revealing a whole proteome picture of mutant sperm defective in sperm migration and sperm-zona binding. ADAM3, a key component of fertilization complex, as well as other sperm ADAM proteins are significantly reduced. We hence propose that LYPD4 plays an essential role in mammalian fertilization, and further investigation of its function and its interaction with other sperm membrane complexes may yield insights into human fertilization and novel strategy to improve IVF success.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lukas Ded ◽  
Jae Yeon Hwang ◽  
Kiyoshi Miki ◽  
Huanan F Shi ◽  
Jean-Ju Chung

Out of millions of ejaculated sperm, a few reach the fertilization site in mammals. Flagellar Ca2+ signaling nanodomains, organized by multi-subunit CatSper calcium channel complexes, are pivotal for sperm migration in the female tract, implicating CatSper-dependent mechanisms in sperm selection. Here using biochemical and pharmacological studies, we demonstrate that CatSper1 is an O-linked glycosylated protein, undergoing capacitation-induced processing dependent on Ca2+ and phosphorylation cascades. CatSper1 processing correlates with protein tyrosine phosphorylation (pY) development in sperm cells capacitated in vitro and in vivo. Using 3D in situ molecular imaging and ANN-based automatic detection of sperm distributed along the cleared female tract, we demonstrate that spermatozoa past the utero-tubal junction possess the intact CatSper1 signals. Together, we reveal that fertilizing mouse spermatozoa in situ are characterized by intact CatSper channel, lack of pY, and reacted acrosomes. These findings provide molecular insight into sperm selection for successful fertilization in the female reproductive tract.


2007 ◽  
Vol 19 (1) ◽  
pp. 175
Author(s):  
O. Garcia-Alvarez ◽  
A. Maroto-Morales ◽  
M. D. Perez-Guzman ◽  
A. J. Soler

Cryopreservation may damage the fertilizing ability of spermatozoa. For this reason, it is important to assess the sperm before artificial insemination. In vitro fertilization (IVF) tests are the most suitable for assessing overall sperm function during fertilization. The aim of this work was to study whether a relationship exists between heterologous calf in vitro fertilization and in vivo fertility in Manchega sheep, with the purpose of predicting in vivo fertility of males before using their semen. Frozen–thawed sperm from 4 Manchega rams was used to laparoscopically inseminate 481 ewes of the same breed. Sperm was cryopreserved in a TRIS-yolk-glycerol extender. A minimum of 10 females were laparoscopicly inseminated per ram. These same straws were used for IVF (4 replicates per male). Domestic calf ovaries were collected at a slaughterhouse. Inmature cumulus–oocyte complexes (COCs) were aspirated and matured in vitro in TCM-199 with 10 ng mL-1 EGF and 100 �M cysteamine. After 24 h, zona-intact mature oocytes were incubated in synthetic oviduct fluid supplemented with 10% estrous sheep serum. Thawed spermatozoa were co-incubated with the oocytes (one million per well) for 40 h, and the cleavage rate was asessed. A regresion analysis was performed. The in vivo fertility ranged from 25.00 to 62.50%. Two rams had a fertility under 30.00% and the other ones over 55.00%. The in vitro fertility ranged from 42.50 to 58.50%. The in vivo fertility was not related to the in vitro fertility (P = 0.17). This could be due to the low number of males used in this work. Heterologous calf in vitro fertilization tests cannot be used to predict in vivo fertility of ram semen since no relationship was found between both variables. Nevertheless, these results are preliminary and we are working with more rams and replicates to obtain more information. This work was funded by INIA and Consejeria de Agricultura de Castilla-La Mancha. Garcia-Alvarez enjoyed a studentship from the INIA


2015 ◽  
Vol 112 (17) ◽  
pp. 5431-5436 ◽  
Author(s):  
Chih-kuan Tung ◽  
Lian Hu ◽  
Alyssa G. Fiore ◽  
Florencia Ardon ◽  
Dillon G. Hickman ◽  
...  

Successful mammalian reproduction requires that sperm migrate through a long and convoluted female reproductive tract before reaching oocytes. For many years, fertility studies have focused on biochemical and physiological requirements of sperm. Here we show that the biophysical environment of the female reproductive tract critically guides sperm migration, while at the same time preventing the invasion of sexually transmitted pathogens. Using a microfluidic model, we demonstrate that a gentle fluid flow and microgrooves, typically found in the female reproductive tract, synergistically facilitate bull sperm migration toward the site of fertilization. In contrast, a flagellated sexually transmitted bovine pathogen, Tritrichomonas foetus, is swept downstream under the same conditions. We attribute the differential ability of sperm and T. foetus to swim against flow to the distinct motility types of sperm and T. foetus; specifically, sperm swim using a posterior flagellum and are near-surface swimmers, whereas T. foetus swims primarily via three anterior flagella and demonstrates much lower attraction to surfaces. This work highlights the importance of biophysical cues within the female reproductive tract in the reproductive process and provides insight into coevolution of males and females to promote fertilization while suppressing infection. Furthermore, the results provide previously unidentified directions for the development of in vitro fertilization devices and contraceptives.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1297
Author(s):  
Chih-Kuan Tung ◽  
Susan S. Suarez

The functions of the female reproductive tract not only encompass sperm migration, storage, and fertilization, but also support the transport and development of the fertilized egg through to the birth of offspring. Further, because the tract is open to the external environment, it must also provide protection against invasive pathogens. In biophysics, sperm are considered “pusher microswimmers”, because they are propelled by pushing fluid behind them. This type of swimming by motile microorganisms promotes the tendency to swim along walls and upstream in gentle fluid flows. Thus, the architecture of the walls of the female tract, and the gentle flows created by cilia, can guide sperm migration. The viscoelasticity of the fluids in the tract, such as mucus secretions, also promotes the cooperative swimming of sperm that can improve fertilization success; at the same time, the mucus can also impede the invasion of pathogens. This review is focused on how the mammalian female reproductive tract and sperm interact physically to facilitate the movement of sperm to the site of fertilization. Knowledge of female/sperm interactions can not only explain how the female tract can physically guide sperm to the fertilization site, but can also be applied for the improvement of in vitro fertilization devices.


Sign in / Sign up

Export Citation Format

Share Document