scholarly journals Two distinct Sertoli cell states are regulated via germ cell crosstalk†

Author(s):  
Rachel L Gewiss ◽  
Nathan C Law ◽  
Aileen R Helsel ◽  
Eric A Shelden ◽  
Michael D Griswold

Abstract Sertoli cells are a critical component of the testis environment for their role in maintaining seminiferous tubule structure, establishing the blood-testis barrier, and nourishing maturing germ cells in a specialized niche. This study sought to uncover how Sertoli cells are regulated in the testis environment via germ cell crosstalk in the mouse. We found two major clusters of Sertoli cells as defined by their transcriptomes in Stages VII–VIII of the seminiferous epithelium and a cluster for all other stages. Additionally, we examined transcriptomes of germ cell-deficient testes and found that these existed in a state independent of either of the germ cell-sufficient clusters. Altogether, we highlight two main transcriptional states of Sertoli cells in an unperturbed testis environment, and a germ cell-deficient environment does not allow normal Sertoli cell transcriptome cycling and results in a state unique from either of those seen in Sertoli cells from a germ cell-sufficient environment.

1990 ◽  
Vol 2 (3) ◽  
pp. 225 ◽  
Author(s):  
Kretser DM de

The interactions between the Sertoli cells and germ cells are progressively becoming an important part of testicular physiology. This paper explores the cytological basis for these interactions, detailing the cyclic changes in the Sertoli cells in concert with the stages of the seminiferous cycle and the nature of the blood-testis barrier. These cytological changes are correlated with a number of variations in the function of Sertoli cells. The mechanisms by which germ cells and Sertoli cells interact are explored and can be divided into those using cell-to-cell contact and others utilizing paracrine factors.


2011 ◽  
Vol 300 (1) ◽  
pp. R121-R139 ◽  
Author(s):  
R.-Marc Pelletier ◽  
Casimir D. Akpovi ◽  
Li Chen ◽  
Robert Day ◽  
María L. Vitale

Spermatogenesis requires connexin 43 (Cx43).This study examines normal gene transcription, translation, and phosphorylation of Cx43 to define its role on germ cell growth and Sertoli cell's differentiation, and identifies abnormalities arising from spontaneous autoimmune orchitis (AIO) in mink, a seasonal breeder and a natural model for autoimmunity. Northern blot analysis detected 2.8- and a 3.7-kb Cx43 mRNA bands in seminiferous tubule-enriched fractions. Cx43 mRNA increased in seminiferous tubule-enriched fractions throughout development and then seasonally with the completion of spermatogenesis. Cx43 protein levels increased transiently during the colonization of the tubules by the early-stage spermatocytes. Cx43 phosphorylated (PCx43) and nonphosphorylated (NPCx43) in Ser368 decreased during the periods of completion of meiosis and Sertoli cell differentiation, while Cx43 mRNA remained elevated throughout. PCx43 labeled chiefly the plasma membrane except by stage VII when vesicles were also labeled in Sertoli cells. Vesicles and lysosomes in Sertoli cells and the Golgi apparatus in the round spermatids were NPCx43 positive. A decrease in Cx43 gene expression was matched by a Cx43 protein increase in the early, not the late, phase of AIO. Total Cx43 and PCx43 decreased with the advance of orchitis. The study makes a novel finding of gap junctions connecting germ cells. The data indicate that Cx43 protein expression and phosphorylation in Ser368 are stage-specific events that may locally influence the acquisition of meiotic competence and the Sertoli cell differentiation in normal testis. AIO modifies Cx43 levels, suggesting changes in Cx43-mediated intercommunication and spermatogenic activity in response to cytokines imbalances in Sertoli cells.


2013 ◽  
Vol 304 (2) ◽  
pp. E145-E159 ◽  
Author(s):  
Xiang Xiao ◽  
Dolores D. Mruk ◽  
C. Yan Cheng

During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research.


1999 ◽  
Vol 145 (5) ◽  
pp. 1027-1038 ◽  
Author(s):  
Antonella Tripiciano ◽  
Carmelina Peluso ◽  
Anna Rita Morena ◽  
Fioretta Palombi ◽  
Mario Stefanini ◽  
...  

The potent smooth muscle agonist endothelin-1 (ET-1) is involved in the local control of seminiferous tubule contractility, which results in the forward propulsion of tubular fluid and spermatozoa, through its action on peritubular myoid cells. ET-1, known to be produced in the seminiferous epithelium by Sertoli cells, is derived from the inactive intermediate big endothelin-1 (big ET-1) through a specific cleavage operated by the endothelin-converting enzyme (ECE), a membrane-bound metalloprotease with ectoenzymatic activity. The data presented suggest that the timing of seminiferous tubule contractility is controlled locally by the cyclic interplay between different cell types. We have studied the expression of ECE by Sertoli cells and used myoid cell cultures and seminiferous tubule explants to monitor the biological activity of the enzymatic reaction product. Northern blot analysis showed that ECE-1 (and not ECE-2) is specifically expressed in Sertoli cells; competitive enzyme immunoassay of ET production showed that Sertoli cell monolayers are capable of cleaving big ET-1, an activity inhibited by the ECE inhibitor phosphoramidon. Microfluorimetric analysis of intracellular calcium mobilization in single cells showed that myoid cells do not respond to big endothelin, nor to Sertoli cell plain medium, but to the medium conditioned by Sertoli cells in the presence of big ET-1, resulting in cell contraction and desensitization to further ET-1 stimulation; in situ hybridization analysis shows regional differences in ECE expression, suggesting that pulsatile production of endothelin by Sertoli cells (at specific “stages” of the seminiferous epithelium) may regulate the cyclicity of tubular contraction; when viewed in a scanning electron microscope, segments of seminiferous tubules containing the specific stages characterized by high expression of ECE were observed to contract in response to big ET-1, whereas stages with low ECE expression remained virtually unaffected. These data indicate that endothelin-mediated spatiotemporal control of rhythmic tubular contractility might be operated by Sertoli cells through the cyclic expression of ECE-1, which is, in turn, dependent upon the timing of spermatogenesis.


1992 ◽  
Vol 132 (3) ◽  
pp. 439-NP ◽  
Author(s):  
S. Maddocks ◽  
J. B. Kerr ◽  
G. Allenby ◽  
R. M. Sharpe

ABSTRACT During normal sexual maturation of the male rat there is a progressive change in the route of secretion of inhibin by the Sertoli cell, from a predominantly basal route of secretion in prepuberty to a predominantly apical route of secretion in adulthood. This change may be monitored by comparing the levels of inhibin in testicular (TV), spermatic and peripheral (PV) venous blood and the levels in testicular interstitial fluid (IF). This study has assessed the role of germ cells in effecting this change by assessing (a) the effect of total germ cell depletion by X-irradiation of the males in utero, and (b) the effect of selective germ cell depletion in adulthood using the testicular toxicant, methoxyacetic acid (MAA). Female rats were X-irradiated on day 20 of gestation to produce male offspring whose testes were germ-cell deficient. Blood and IF samples were collected from groups of these offspring and age-matched controls at 35 and 100 days of age. In blood and IF samples, inhibin concentrations were significantly higher at 35 days of age than at 100 days. The absence of germ cells in X-irradiated animals did not affect the age-related fall in inhibin levels, nor the change in the predominant route of secretion of inhibin from the testis into blood. Testosterone was almost undetectable in 35-day-old controls, but was raised significantly by 100 days of age. In X-irradiated animals, testosterone levels were increased significantly at 35 days of age, and the levels in most samples were increased even more substantially by 100 days of age. However, PV levels of testosterone in 100-day-old X-irradiated animals were significantly lower than in controls. LH and FSH levels were raised in X-irradiated animals compared with their age-matched controls, but FSH levels in X-irradiated animals still fell with age, as in the controls. The role of specific germ cell types in regulating the route of secretion of inhibin from the normal adult testis was studied after depletion (80–100%) of pachytene and later spermatocytes by a single oral administration of MAA (650 mg/kg) to adult rats. At 3 days after MAA treatment, coincident with the loss of pachytene spermatocytes, plasma inhibin levels were increased significantly in blood and IF samples, and this was associated with a dramatic change in the route of secretion of inhibin from the testis, with increased secretion of this peptide via the base of the Sertoli cell into IF and TV blood. However, previous studies suggest that this may be a consequence of direct stimulation by MAA, rather than the absence of pachytene spermatocytes. By 21 days after MAA treatment, when late-stage spermatids are absent, plasma inhibin levels were reduced significantly compared with controls, although the route of secretion of inhibin from the testis was comparable with that of controls. By 42 days, when a normal germ cell complement has been restored, plasma concentrations and the route of secretion of inhibin from the testis were similar to controls. It is concluded that: (1) the presence of germ cells is not necessary for the maturational changes in the rate and route of secretion of inhibin by the Sertoli cell; these changes are most likely a consequence of formation of the blood–testis barrier, (2) in the normal adult testis, MAA-induced depletion of the most mature germ cell types affects the rate, but not the route, of inhibin secretion, whilst depletion of pachytene spermatocytes affects both parameters; the latter may indicate an early effect of MAA on the functional competence of the blood–testis barrier. Journal of Endocrinology (1992) 132, 439–448


2002 ◽  
Vol 126 (1) ◽  
pp. 64-69
Author(s):  
Manuel Nistal ◽  
María Luisa Riestra ◽  
Ricardo Paniagua

Abstract Objective.—To evaluate seminiferous epithelium lesions in adult cryptorchid testes showing lymphoid infiltrates in seminiferous tubules and interstitium (ie, focal orchitis). Also, to consider the possible role of this lesion in the etiology of tubular atrophy. Methods.—We performed a histopathologic study of the cryptorchid testes and adjacent epididymides removed from 50 adult men who had not been previously treated for cryptorchidism. The study included morphologic and semiquantitative evaluation of seminiferous tubule pathology (according to germ cell numbers), Sertoli cell morphology, tubular lumen dilation, rete testis pattern (normal, hypoplastic, or cystic), and epididymal pattern (normal or epididymal duct hypoplasia). The study also included immunohistochemical evaluation of immune cell markers. The results were compared with clinical and laboratory findings. Results.—Focal lymphoid infiltrates (mainly lymphocytes) in seminiferous tubules and interstitium were found in 22 patients (44%), all of whom had unilateral cryptorchidism. The course of orchitis was asymptomatic, and laboratory data were normal. According to the seminiferous tubule pathology, a variety of histopathologic diagnoses, were made: (1) mixed atrophy consisting of Sertoli cell–only tubules intermingled with tubules showing maturation arrest of spermatogonia (11 testes, 4 of which also showed hyalinized tubules); (2) Sertoli cell–only tubules plus hyalinized tubules (4 testes); (3) Sertoli cell–only tubules (3 testes); (4) intratubular germ cell neoplasia (2 testes, 1 of which also showed hyalinized tubules); (5) complete tubular hyalinization (1 testis); and (6) tubular hyalinization plus some groups of tubules with hypospermatogenesis (all germ cell types were present although in lower numbers, 1 testis). Dysgenetic Sertoli cells, that is, Sertoli cells that had undergone anomalous, incomplete maturation, were observed in all nonhyalinized seminiferous tubules with inflammatory infiltrates. Tubular ectasia was observed in 13 cases. The rete testis was hypoplastic and showed cystic transformation in 18 testes, and the epididymis was hypoplastic in 15 testes. Conclusions.—The causes of these focal inflammatory infiltrates are unknown. It is possible that tubular ectasia and Sertoli cell dysgenesis are involved and that these alterations cause a disruption of the blood-testis barrier and allow antigens to enter the testicular interstitium, giving rise to an autoimmune process.


2010 ◽  
Vol 365 (1546) ◽  
pp. 1593-1605 ◽  
Author(s):  
Ilona A. Kopera ◽  
Barbara Bilinska ◽  
C. Yan Cheng ◽  
Dolores D. Mruk

Spermatogenesis is a process that involves an array of cellular and biochemical events, collectively culminating in the formation of haploid spermatids from diploid precursor cells known as spermatogonia. As germ cells differentiate from spermatogonia into elongated spermatids, they also progressively migrate across the entire length of the seminiferous epithelium until they reach the luminal edge in anticipation of spermiation at late stage VIII of spermatogenesis. At the same time, these germ cells must maintain stable attachment with Sertoli cells via testis-unique intermediate filament- (i.e. desmosome-like junctions) and actin- (i.e. ectoplasmic specializations, ESs) based cell junctions to prevent sloughing of immature germ cells from the seminiferous epithelium, which may result in infertility. In essence, both desmosome-like junctions and basal ESs are known to coexist between Sertoli cells at the level of the blood–testis barrier where they cofunction with the well-studied tight junction in maintaining the immunological barrier. However, the type of anchoring device that is present between Sertoli and germ cells depends on the developmental stage of the germ cell, i.e. desmosome-like junctions are present between Sertoli and germ cells up to, but not including, step 8 spermatids after which this junction type is replaced by the apical ES. While little is known about the biology of the desmosome-like junction in the testis, we have a relatively good understanding of the molecular architecture and the regulation of the ES. Here, we discuss recent findings relating to these two junction types in the testis, highlighting prospective areas that should be investigated in future studies.


2002 ◽  
Vol 82 (4) ◽  
pp. 825-874 ◽  
Author(s):  
C. Yan Cheng ◽  
Dolores D. Mruk

Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.


2010 ◽  
Vol 22 (1) ◽  
pp. 315
Author(s):  
J. R. Rodriguez-Sosa ◽  
G. M. J. Costa ◽  
R. Rathi ◽  
L. R. França ◽  
I. Dobrinski

In rodents, thyroid hormones inhibit Sertoli cell proliferation, promote Sertoli cell differentiation, and accelerate lumen formation in the seminiferous tubules. Conversely, transient hypothyroidism prolongs Sertoli cell proliferation, leading to increased Sertoli cell number and testicular size. In order to evaluate whether 6-N-propyl-2-thiouracil (PTU)-induced hypothyroidism in the host mouse would affect seminiferous tubule development and germ cell differentiation, and subsequently increase spermatogenesis in bovine testis xenografts, fragments (∼1 mm3) of testes from 1-wk-old Holstein calves (n = 6) were transplanted ectopically to castrated immunodeficient male mice (n = 6/donor). Mice (n = 3/donor) were treated with 0.1% (w/v) PTU in drinking water for 4 weeks or left as control. At 5 and 7 months after grafting, grafts were analyzed by morphometry and immunohistochemistry for expression of protein gene product 9.5 (PGP 9.5) as a germ cell marker, and Mullerian-inhibiting substance (MIS) and androgen receptor (AR) to assess Sertoli cell maturation. For each variable, averages of each group were compared at each collection point by t-test PTU treatment to the drinking water for 1 month suppressed thyroid hormone levels (T4) in host mice without negative systemic effects (0.3 ± 0.2 v. 4 ± 0.3 μg dL-1 at 4 weeks in treated v. control mice, respectively, P < 0.05). Spermatogenesis in recovered grafts was arrested at meiosis regardless of treatment and collection time. Graft weight was lower in treated mice than in controls (21 ± 4 v. 42 ± 5 and 24 ± 9 v. 51 ± 5 mg, at 5 and 7 months, respectively, P < 0.05). Volume density of the tubular and intertubular compartments, and seminiferous epithelium, was not affected by treatment (P > 0.05); however, treatment reduced lumen density compared to controls (9 ± 2 v. 19 ± 3 and 12 ± 1 v. 24 ± 4%) and tubular diameter (121 ± 3 v. 140 ± 7 and 144 ± 2v. 170 ± 2 (im, at 5 and 7 months, respectively (P < 0.05). Tubule length per milligram was not different at 5 months between control and treated groups (P > 0.05) but was increased at 7 months in the treated grafts (50 ± 1 v. 30 ± 1 cm, P < 0.05). Number of Sertoli cells per milligram was not affected by treatment (P > 0.05). However, Sertoli cell volume was increased in controls (440 ± 19 v. 341 ± 14 and 504 ± 6 v. 388 ± 18 μm3, at 5 and 7 months, respectively, P < 0.05). The number of germ cells per 100 Sertoli cells was not different between groups at any collection time (P > 0.05). Sertoli cells showed variable MIS expression and lack of or weak AR expression regardless of treatment and collection time, indicating an immature phenotype. In conclusion, suppression of thyroid hormone levels in host mice affects seminiferous tubule development in bovine testis xenografts, demonstrating that endocrine manipulation of the mouse host will affect xenografts in a predictable manner. However, treatment did not affect number and differentiation of germ cells. Rather, incomplete Sertoli cell maturation appears to lead to incomplete germ cell differentiation in bovine testis xenografts. Supported by USDA (2007-35203-18213).


1985 ◽  
Vol 101 (4) ◽  
pp. 1511-1522 ◽  
Author(s):  
M A Hadley ◽  
S W Byers ◽  
C A Suárez-Quian ◽  
H K Kleinman ◽  
M Dym

Sertoli cell preparations isolated from 10-day-old rats were cultured on three different substrates: plastic, a matrix deposited by co-culture of Sertoli and peritubular myoid cells, and a reconstituted basement membrane gel from the EHS tumor. When grown on plastic, Sertoli cells formed a squamous monolayer that did not retain contaminating germ cells. Grown on the matrix deposited by Sertoli-myoid cell co-cultures, Sertoli cells were more cuboidal and supported some germ cells but did not allow them to differentiate. After 3 wk however, the Sertoli cells flattened to resemble those grown on plastic. In contrast, the Sertoli cells grown on top of the reconstituted basement membrane formed polarized monolayers virtually identical to Sertoli cells in vivo. They were columnar with an elaborate cytoskeleton. In addition, they had characteristic basally located tight junctions and maintained germ cells for at least 5 wk in the basal aspect of the monolayer. However, germ cells did not differentiate. Total protein, androgen binding protein, transferrin, and type I collagen secretion were markedly greater when Sertoli cells were grown on the extracellular matrices than when they were grown on plastic. When Sertoli cells were cultured within rather than on top of reconstituted basement membrane gels they reorganized into cords. After one week, tight junctional complexes formed between adjacent Sertoli cells, functionally compartmentalizing the cords into central (adluminal) and peripheral (basal) compartments. Germ cells within the cords continued to differentiate. Thus, Sertoli cells cultured on top of extracellular matrix components assume a phenotype and morphology more characteristic of the in vivo, differentiated cells. Growing Sertoli cells within reconstituted basement membrane gels induces a morphogenesis of the cells into cords, which closely resemble the organ from which the cells were dissociated and which provide an environment permissive for germ cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document