High altitude exposure affects male reproductive parameters: Could it also affect the prostate?†

Author(s):  
Diana Elizabeth Alcantara-Zapata ◽  
Aníbal J Llanos ◽  
Carolina Nazzal

Abstract Living at high altitudes and living with prostatic illness are two different conditions closely related to a hypoxic environment. People at high altitudes exposed to acute, chronic, or intermittent hypobaric hypoxia turn on several mechanisms at the system, cellular and molecular level to cope with oxygen atmosphere scarcity maintaining the oxygen homeostasis. This exposure affects the whole organism and function of many systems, such as cardiovascular, respiratory, and reproductive. On the other hand, malignant prostate is related to the scarcity of oxygen in the tissue microenvironment due to its low availability and high consumption due to the swift cell proliferation rates. Based on the literature, this similarity in the oxygen scarcity suggests that hypobaric hypoxia, and other common factors between these two conditions, could be involved in the aggravation of the pathological prostatic status. However, there is still a lack of evidence in the association of this disease in males at high altitudes. This review aims to examine the possible mechanisms that hypobaric hypoxia might negatively add to the pathological prostate function in males who live and work at high altitudes. More profound investigations of hypobaric hypoxia’s direct action on the prostate could help understand this exposure’s effect and prevent worse prostate illness impact in males at high altitudes.

2021 ◽  
Vol 7 (2) ◽  
pp. 30
Author(s):  
Laeya Baldini ◽  
Bruno Charpentier ◽  
Stéphane Labialle

Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.


1995 ◽  
Vol 7 (4) ◽  
pp. 847 ◽  
Author(s):  
C Gagnon

With very few exceptions, the basic structure of the 9+2 axoneme has been well preserved over a very long period of evolution from protozoa to mammais. This stability indicates that the basic structural components of the axoneme visible by electron microscopy, as well as most of the other unidentified components, have withstood the passage of time. It also means that components of the 9+2 axoneme have sufficient diversity in function to accommodate the various types of motility patterns encountered in different species of flagella. Several of the 200 polypeptides that constitute the axoneme have been identified as components of the dynein arms, radial spokes etc. but many more remain to be identified and their function(s) remain to be determined. Because this review deals with the regulation of flagellar movement at the axonemal level, it does not include regulation of flagella by extracellular factors unless these factors have a direct action on axonemal components. In this context, it is very important firstly to understand the structural components of the axoneme and how they influence and regulate axonemal movement. Different primitive organisms are mentioned in this review since major breakthroughs in our understanding of how an axoneme generates different types of movement have been made through their study. Despite some variations in structure and function of axonemal components, the basic mechanisms involved in the regulation of flagella from Chlamydomonas or sea urchin spermatozoa should also apply to the more evolved mammalian species, including human spermatozoa.


1996 ◽  
Vol 81 (4) ◽  
pp. 1762-1771 ◽  
Author(s):  
A. C. Roberts ◽  
G. E. Butterfield ◽  
A. Cymerman ◽  
J. T. Reeves ◽  
E. E. Wolfel ◽  
...  

Roberts, A. C., G. E. Butterfield, A. Cymerman, J. T. Reeves, E. E. Wolfel, and G. A. Brooks. Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J. Appl. Physiol. 81(4): 1762–1771, 1996.—We tested the hypothesis that exposure to altitude decreases reliance on free fatty acids (FFA) as substrates and increases dependency on blood glucose. Therefore, the effects of exercise, hypobaric hypoxia, and altitude acclimatization on FFA, glycerol and net glucose uptake and release [ = 2(leg blood flow)(arteriovenous concentration)] and on fatty acid (FA) consumption by the legs (= 3 × glycerol release + FFA uptake) were measured. Because sympathetic responses have been implicated, we utilized nonspecific β-blockade and observed responses to exercise, altitude, and altitude acclimatization. We studied six healthy β-blocked men (β) and five matched controls (C) during rest and cycle ergometry exercise (88 W) at 49% of sea-level (SL) peak O2 uptake at the same absolute power output on acute altitude exposure (A1; barometric pressure = 430 Torr) and after 3 wk of chronic altitude exposure to 4,300 m (A2). During exercise at SL, FA consumption rates increased ( P < 0.05). On arrival at 4,300 m, resting leg FFA uptake and FA consumption rates were not significantly different from those at SL. However, after acclimatization to altitude, at rest leg FA consumption decreased to essentially zero in both C and β groups. During exercise at altitude after acclimatization, leg FA consumption increased significantly, but values were less than at SL or A1 ( P < 0.05), whereas glucose uptake increased relative to SL values. Furthermore, β-blockade significantly increased glucose uptake relative to control. We conclude that 1) chronic altitude exposure decreases leg FA consumption during rest and exercise; 2) relative to SL, FFA uptake decreases while glucose uptake increases during exercise at altitude; and 3) β-blockade potentiates these effects.


2018 ◽  
Author(s):  
Caroline Fecher ◽  
Laura Trovò ◽  
Stephan A. Müller ◽  
Nicolas Snaidero ◽  
Jennifer Wettmarshausen ◽  
...  

AbstractMitochondria vary in morphology and function in different tissues, however little is known about their molecular diversity among cell types. To investigate mitochondrial diversity in vivo, we developed an efficient protocol to isolate cell type-specific mitochondria based on a new MitoTag mouse. We profiled the mitochondrial proteome of three major neural cell types in cerebellum and identified a substantial number of differential mitochondrial markers for these cell types in mice and humans. Based on predictions from these proteomes, we demonstrate that astrocytic mitochondria metabolize long-chain fatty acids more efficiently than neurons. Moreover, we identified Rmdn3 as a major determinant of ER-mitochondria proximity in Purkinje cells. Our novel approach enables exploring mitochondrial diversity on the functional and molecular level in many in vivo contexts.


2020 ◽  
Vol 477 (8) ◽  
pp. 1427-1442 ◽  
Author(s):  
Anna Wilbrey-Clark ◽  
Kenny Roberts ◽  
Sarah A. Teichmann

Since Robert Hooke first described the existence of ‘cells’ in 1665, scientists have sought to identify and further characterise these fundamental units of life. While our understanding of cell location, morphology and function has expanded greatly; our understanding of cell types and states at the molecular level, and how these function within tissue architecture, is still limited. A greater understanding of our cells could revolutionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to identify all cell types at the molecular level, including their physical locations, and to make this reference data openly available to the scientific community. This is made possible by a recent technology revolution: both in single-cell molecular profiling, particularly single-cell RNA sequencing, and in spatially resolved methods for assessing gene and protein expression. Here, we review available and upcoming atlasing technologies, the biological insights gained to date and the promise of this field for the future.


2019 ◽  
Vol 35 (1) ◽  
pp. 88-118
Author(s):  
Dhiraj Kumar Nite

This article explains the way mineworkers negotiated workplace hazards and articulated their ideas of safety. Mineworkers increasingly attained mining sense and made use of it, thereby surviving terrible working conditions and seeking to mend the accident-control mechanism. The formation and function of their mining sense were part of the industrialization process. It involved mineworkers’ particular ways of adaptation—quixotic and prudent—to the demand made by work relations. The miners’ unions strove to push the safety regime beyond voluntary codes of discipline and practical and technological solutions. They invested in legislative disciplining and sought informed safety-supervisory controls. They got involved in ‘civic engagement’ with agreeable investigators and legislators within the colonial context and afterwards. Confronted with the limits of such measures, the rank-and-file moved on, from the latter half of the 1950s to direct action in the very mining faces, thereby insisting on the right to withdrawal from danger. The historiographies which argued that Indian workers knowingly acquiesced to perilous mining to maintain livelihoods inadequately lend us the safety ideas shared and action at protection prevention undertaken by mineworkers. This article shows that Indian mineworkers reinforced the safety campaign through their strategic manoeuvring in legislative and workplace struggles as did their counterparts in Britain and some other societies.


2001 ◽  
Vol 7 (S2) ◽  
pp. 124-125
Author(s):  
Christopher A. Siedlecki

A widely accepted tenet of biomaterials research is that the initial step following contact of a synthetic material with blood is the rapid adsorption of plasma proteins. The composition of this adsorbed protein layer is dependent on a variety of factors, including the surface properties of the implant material and the nature of the adsorbing proteins, and the composition and function of this protein layer is important in the subsequent biological response and ultimately the success or failure of the implanted material. While a great amount of effort has gone into developing structure/function responses for implanted biomaterials, there is still much about the molecular level interactions to be determined. We utilized atomic force microscopy (AFM) to investigate the molecular-level interactions of proteins with model biomaterial substrates. The AFM is unique in that it offers the opportunity to characterize interfacial environments, determine material properties, measure protein/surface interaction forces, and visualize the tertiary structure of adsorbed proteins.


2020 ◽  
Vol 10 ◽  
Author(s):  
Julia M. Kröpfl ◽  
Tobias Kammerer ◽  
Valentina Faihs ◽  
Hans-Jürgen Gruber ◽  
Jan Stutz ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yonggang Wang ◽  
Hao Wu ◽  
Ying Xin ◽  
Yang Bai ◽  
Lili Kong ◽  
...  

Although angiotensin II (Ang II) was reported to facilitate sperm motility and intratesticular sperm transport, recent findings shed light on the efficacy of Ang II in stimulating inflammatory events in testicular peritubular cells, effect of which may play a role in male infertility. It is still unknown whether Ang II can induce testicular apoptotic cell death, which may be a more direct action of Ang II in male infertility. Therefore, the present study aims to determine whether Ang II can induce testicular apoptotic cell death and whether this action can be prevented by sulforaphane (SFN) via activating nuclear factor (erythroid-derived 2)-like 2 (NRF2), the governor of antioxidant-redox signalling. Eight-week-old male C57BL/6J wild type (WT) and Nrf2 gene knockout mice were treated with Ang II, in the presence or absence of SFN. In WT mice, SFN activated testicular NRF2 expression and function, along with a marked attenuation in Ang II-induced testicular oxidative stress, inflammation, endoplasmic reticulum stress, and apoptotic cell death. Deletion of the Nrf2 gene led to a complete abolishment of these efficacies of SFN. The present study indicated that Ang II may result in testicular apoptotic cell death, which can be prevented by SFN via the activation of NRF2.


Sign in / Sign up

Export Citation Format

Share Document