The effects of vitrification on oocyte quality

Author(s):  
Ching-Chien Chang ◽  
Daniel B Shapiro ◽  
Zsolt Peter Nagy

Abstract Vitrification, is an ultra-rapid, manual cooling process that produces glass-like (ice crystal free) solidification. Water is prevented from forming intercellular and intracellular ice crystals during cooling as a result of oocyte dehydration and the use of highly concentrated cryoprotectant. Though oocytes can be cryopreserved without ice crystal formation through vitrification, it is still not clear whether the process of vitrification causes any negative impact (temperature change/chilling effect, osmotic stress, cryoprotectant toxicity, and/or phase transitions) on oocyte quality that translate to diminished embryo developmental potential or subsequent clinical outcomes. In this review, we attempt to assess the technique’s potential effects and the consequence of these effects on outcomes.

Author(s):  
I. Taylor ◽  
P. Ingram ◽  
J.R. Sommer

In studying quick-frozen single intact skeletal muscle fibers for structural and microchemical alterations that occur milliseconds, and fractions thereof, after electrical stimulation, we have developed a method to compare, directly, ice crystal formation in freeze-substituted thin sections adjacent to all, and beneath the last, freeze-dried cryosections. We have observed images in the cryosections that to our knowledge have not been published heretofore (Figs.1-4). The main features are that isolated, sometimes large regions of the sections appear hazy and have much less contrast than adjacent regions. Sometimes within the hazy regions there are smaller areas that appear crinkled and have much more contrast. We have also observed that while the hazy areas remain still, the regions of higher contrast visibly contract in the beam, often causing tears in the sections that are clearly not caused by ice crystals (Fig.3, arrows).


Author(s):  
Stanley Bullivant

This review will be limited to physical preservation methods involving freezing, and will include discussion of freeze-drying, freeze-substitution, ultracryomicrotomy and freezeetching. Pre-treatment and freezing steps can be considered as common to all techniques.The most common pre-treatment is soaking in a cold 20% glycerol solution to provide protection against ice crystal formation. Glutaraldehyde fixation is often used before freezing. With special freezing techniques no pretreatment may be necessary.Freezing should be so rapid that it does not produce ice crystals larger than 2nm. in diameter. Following glycerol treatment, immersion in Freon 12 at its melting point of -155 C is adequate. Freezing in boiling liquid nitrogen is not usually satisfactory.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1220
Author(s):  
Kazutoshi Nishijima ◽  
Shuji Kitajima ◽  
Fumikazu Matsuhisa ◽  
Manabu Niimi ◽  
Chen-chi Wang ◽  
...  

The rabbit is a valuable animal for both the economy and biomedical sciences. Sperm cryopreservation is one of the most efficient ways to preserve rabbit strains because it is easy to collect ejaculate repeatedly from a single male and inseminate artificially into multiple females. During the cooling, freezing and thawing process of sperms, the plasma membrane, cytoplasm and genome structures could be damaged by osmotic stress, cold shock, intracellular ice crystal formation, and excessive production of reactive oxygen species. In this review, we will discuss the progress made during the past years regarding efforts to minimize the cell damage in rabbit sperms, including freezing extender, cryoprotectants, supplements, and procedures.


2018 ◽  
Vol 11 (10) ◽  
pp. 4021-4041 ◽  
Author(s):  
Sara Bacer ◽  
Sylvia C. Sullivan ◽  
Vlassis A. Karydis ◽  
Donifan Barahona ◽  
Martina Krämer ◽  
...  

Abstract. A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) allows for the treatment of ice nucleation taking into account the competition for water vapour between homogeneous and heterogeneous nucleation in cirrus clouds. Furthermore, the influence of chemically heterogeneous, polydisperse aerosols is considered by applying one of the multiple ice nucleating particle parameterizations which are included in BN09 to compute the heterogeneously formed ice crystals. BN09 has been modified in order to consider the pre-existing ice crystal effect and implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC parameterizations, BN09 produces fewer ice crystals in the upper troposphere but higher ICNCs in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. Overall, ICNCs agree well with the observations, especially in cold cirrus clouds (at temperatures below 205 K), although they are underestimated between 200 and 220 K. As BN09 takes into account processes which were previously neglected by the standard version of the model, it is recommended for future EMAC simulations.


2021 ◽  
Author(s):  
Daniela Impe ◽  
Daniel Ballesteros ◽  
Manuela Nagel

Abstract Long-term storage of pollen is important for the fertilization of spatially or temporally isolated female parents, especially during hybrid breeding. Wheat pollen is dehydration-sensitive and rapidly loses viability after shedding. To preserve wheat pollen, we hypothesized that fast-(flash)-drying and fast cooling (150°C min-1) compared to slow-(air)-drying and slow cooling (1°C min-1) would increase the rate of intracellular water content (WC) removal, decrease intracellular ice crystal formation, and increase viability after exposure to ultra-low temperatures. High correlations were found between pollen WC and viability analyzed by impedance flow cytometry (IFC viability: r=0.92, P<0.001) and pollen germination (r=0.94, P<0.001). After 10 min of air-drying, 66% WC was lost and pollen germination was at 12.2±12.3%. After 10 min of flash-drying, WC of pollen reduced by 74%. IFC viability decreased from 90.2±6.7 to 39.4±17.9%, and pollen germination dropped from 33.7±16.9 to 1.9±3.9%. After 12 min of flash-drying, WCs decreased to <0.34 mg H2O mg-1 DW, ice crystal formation was completely prevented (ΔH=0 J mg-1 DW), and pollen germination reached 1.2±1.0%. After slow and fast cooling, flash-dried pollen (WC 0.91±0.11 mg H2O mg-1 DW) showed less ice crystal formation during cryomicroscopic-video-recordings and had IFC viability of 4.5±7.0% (slow) and 6.1±8.8% (fast), respectively, compared to air-dried pollen which lost all viability. Generally, fast-(flash)-drying and increased cooling rates may enable the survival of wheat pollen likely due to (1) a fast rate of intracellular WC loss that reduces deleterious biochemical changes associated with the drying process and (2) a delay and reduction in intracellular ice crystal formation.


2018 ◽  
Author(s):  
Sara Bacer ◽  
Sylvia C. Sullivan ◽  
Vlassis A. Karydis ◽  
Donifan Barahona ◽  
Martina Krämer ◽  
...  

Abstract. A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to realistically represent ice crystal number concentrations. The parameterization of Barahona and Nenes (2009, hereafter BN09) allows the treatment of ice nucleation, taking into account the competition for water vapour between homogeneous and heterogeneous nucleation and pre-existing ice crystals in cold clouds. Furthermore, the influence of chemically-heterogeneous, polydisperse aerosols is considered via multiple ice nucleating particle spectra, which are included in the parameterization to compute the heterogeneously formed ice crystals. BN09 has been implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC results, BN09 produces fewer ice crystals in the upper troposphere but higher ice crystal number concentrations in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. The comparison with a climatological data set of aircraft measurements shows that BN09 used in the cirrus regime improves the model results and, therefore, is recommended for future EMAC simulations.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 411
Author(s):  
Shulai Liu ◽  
Xiaohong Zeng ◽  
Zhenyu Zhang ◽  
Guanyu Long ◽  
Fei Lyu ◽  
...  

This study aimed to evaluate the effect of immersion freezing (IF) at different temperatures on ice crystal formation and protein properties in fish muscle. Snakehead blocks were frozen by IF at −20, −30, and −40 °C, and conventional air freezing (AF) at −20 °C. The size of ice crystals in the frozen samples was evaluated using Image J software. Changes in protein properties were analyzed by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Snakehead blocks frozen using IF contained smaller ice crystals and better microstructures, especially at lower temperatures. The mean cross-sectional areas of ice crystals formed in the frozen samples were 308.8, 142.4, and 86.5 μm2 for IF treatments at −20, −30, and −40 °C, respectively, and 939.6 μm2 for the AF treatment. The FT-IR results show that protein aggregation in the frozen fish blocks was manifested by a decrease in α-helices connected to the increased random coil fraction. The DSC results show that samples prepared by IF had a higher denaturation enthalpy (∆H) and denaturation maximum temperature (Tmax) than those prepared by AF. These results confirm that IF generated a larger number of smaller ice crystals, which is conducive to food preservation.


2004 ◽  
Vol 16 (2) ◽  
pp. 173 ◽  
Author(s):  
Y.M. Kim ◽  
D.H. Ko ◽  
S.J. Uhm ◽  
K.S. Chung ◽  
H.T. Lee

Vitrification has been used to eliminate ice crystal formation during the cryopreservation of mammalian embryos. However, this method may introduce some problems such as loss of eggs during cryopreservation (EM grid) and damage to the zona pellucida. This study examined an alternative container (paper) for the vitrification of in vitro-produced bovine blastocysts. Bovine oocytes were aspirated from slaughterhouse ovaries and cultured in TCM-199 supplemented with 25mM NaHCO3, 10% (v:v) FBS, 0.22mM sodium pyruvate, 25mM gentamycin sulfate, 10μgmL−1 FSH (Follitropin V; Vetrepharm, Canada) and 1μgmL−1 estradiol-17β for 24h. Matured oocytes were co-cultured with sperm (1–106mL−1) treated by percoll gradient for 42–44h. Cleaved embryos were cultured in 50μL CR1aa medium containing 0.4% BSA for 5 days. Blastocysts were exposed to 5.5M ethylene glycol in CR1aa medium for 20s. The blastocyst suspensions were vitrified by one of three methods: 1) aspiration into a 0.25-mL plastic straw (10 embryos/straw), heat sealing and immediate plunging into LN2; 2) transfer of a (∼5μL) drop containing 10 blastocysts onto a EM grid and immediate plunging into LN2; or 3) transfer of a (∼5μL) drop containing 10 blastocysts onto a piece of weighing paper (5mm by 5mm; VWR, West Chester, PA, USA) and immediate plunging into LN2. Straws were thawed by holding in air for 10s and then transfer into 37°C water. The embryos were recovered from the straw and transferred into a solution of 0.5M sucrose in CR1aa at 25°C for 1min. EM grids and paper containers were warmed by transfer into 3mL of a solution of 0.5M sucrose in CR1aa medium at 25°C for 1min. Embryos were then diluted serially by transfer into 0.25 and then 0.125M sucrose solutions (1-min steps), and then rinsed and cultured in CR1aa medium supplemented with 10% FBS. After thawing, the recovery rates of embryos from EM grids, straws and paper containers were not significantly different (Table 1). Broken zonae pellucidae were observed after thawing of embryos recovered from straws and EM grids, but not from the paper container. The survival rates of blastocysts cryopreserved on EM grids and paper containers (respectively, 78.1 and 77.1%) were significantly higher (P&lt;0.05) than that of straws (52.1%). The in vivo developmental potential of blastocysts vitrified on EM grids and paper containers was assessed by the transfer of, respectively, 102 and 3 thawed embryos into recipient cows. Pregnancy rates were, as anticipated, 28 and 67%. These results suggest that paper may be an inexpensive and useful container for the cryopreservation of mammalian embryos. Table 1 The viability of vitrifield-thawed bovine embryos using various containers


Author(s):  
Bin Liu ◽  
Jianfei Song ◽  
Zhaodn Yao ◽  
Rachid Bennacer

In order to explore the effect of direct current (DC) and alternating current (AC) magnetic field (MF) on the biological (fruits and vegetables) phase transformation and ice crystal formation, we used carrot strips (0.5 × 0.5 × 1 cm3) and put them at low temperature control panel. The samples were frozen under AC and DC MF of 50 Hz with different intensities, i.e., 0, 0.46, 0.9, 1.8, 3.6, and 7.2 mT. The ice crystals formation during the process of cell freezing was observed and recorded using the optical microscope, and the beginning and ending time of the phase transformation with the corresponding temperatures were determined. The results show that the DC and AC MF situations compared to non-MF can decrease ice crystal volume and be more flocculent. The changes will reduce the cell membrane damage rate. The increase of magnetic field intensity delays the phase change time and leads to a shorter phase transition duration, a reduction in the cells’s lowest noncrystallization temperature is also observed. Such changes in thermal dynamic process and size elementary freezing (rapid formation of small ice crystals) reduce the damage to the quality of fruits and vegetables.


Sign in / Sign up

Export Citation Format

Share Document