scholarly journals Gene Expression Profile of In Vitro Produced Bovine Blastocysts Exposed to Hyperglycemia During Early Cleavage Stages: Link with the Warburg Effect.

2011 ◽  
Vol 85 (Suppl_1) ◽  
pp. 81-81 ◽  
Author(s):  
Gael L.M. Cagnone ◽  
Isabelle Dufort ◽  
Christian Vigneault ◽  
Claude Robert ◽  
Marc-Andre Sirard
2007 ◽  
Vol 30 (4) ◽  
pp. 97 ◽  
Author(s):  
A Wolf ◽  
J Mukherjee ◽  
A Guha

Introduction: GBMs are resistant to apoptosis induced by the hypoxic microenvironment and standard therapies including radiation and chemotherapy. We postulate that the Warburg effect, a preferential glycolytic phenotype of tumor cells even under aerobic conditions, plays a role in these aberrant pro-survival signals. In this study we quantitatively examined the expression profile of hypoxia-related glycolytic genes within pathologically- and MRI-defined “centre” and “periphery” of GBMs. We hypothesize that expression of hypoxia-induced glycolytic genes, particularly hexokinase 2 (HK2), favours cell survival and modulates resistance to tumour cell apoptosis by inhibiting the intrinsic mitochondrial apoptotic pathway. Methods: GBM patients underwent conventional T1-weighted contrast-enhanced MRI and MR spectroscopy studies on a 3.0T GE scanner, prior to stereotactic sampling (formalin and frozen) from regions which were T1-Gad enhancing (“centre”) and T2-positive, T1-Gad negative (“periphery”). Real-time qRT-PCR was performed to quantify regional gene expression of glycolytic genes including HK2. In vitro functional studies were performed in U87 and U373 GBM cell lines grown in normoxic (21% pO2) and hypoxic (< 1%pO2) conditions, transfected with HK2 siRNA followed by measurement of cell proliferation (BrdU), apoptosis (activated caspase 3/7, TUNEL, cytochrome c release) and viability (MTS assay). Results: There exists a differential expression profile of glycolytic enzymes between the hypoxic center and relatively normoxic periphery of GBMs. Under hypoxic conditions, there is increased expression of HK2 at the mitochondrial membrane in GBM cells. In vitro HK2 knockdown led to decreased cell survival and increased apoptosis via the intrinsic mitochondrial pathway, as seen by increased mitochondrial release of cytochrome-C. Conclusions: Increased expression of HK2 in the centre of GBMs promotes cell survival and confers resistance to apoptosis, as confirmed by in vitro studies. In vivo intracranial xenograft studies with injection of HK2-shRNA are currently being performed. HK2 and possibly other glycolytic enzymes may provide a target for enhanced therapeutic responsiveness thereby improving prognosis of patients with GBMs.


2007 ◽  
Vol 82 (6) ◽  
pp. 355-362 ◽  
Author(s):  
Hermine Dika Nguea ◽  
Aymon de Reydellet ◽  
Patrice Lehuédé ◽  
Alain De Meringo ◽  
Alain Le Faou ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Sabine Conrad ◽  
Hossein Azizi ◽  
Maryam Hatami ◽  
Mikael Kubista ◽  
Michael Bonin ◽  
...  

The aim of this study was to elucidate the molecular status of single human adult germ stem cells (haGSCs) and haGSC colonies, which spontaneously developed from the CD49f MACS and matrix- (collagen−/laminin+ binding-) selected fraction of enriched spermatogonia. Single-cell transcriptional profiling by Fluidigm BioMark system of a long-term cultured haGSCs cluster in comparison to human embryonic stem cells (hESCs) and human fibroblasts (hFibs) revealed that haGSCs showed a characteristic germ- and pluripotency-associated gene expression profile with some similarities to hESCs and with a significant distinction from somatic hFibs. Genome-wide comparisons with microarray analysis confirmed that different haGSC colonies exhibited gene expression heterogeneity with more or less pluripotency. The results of this study confirm that haGSCs are adult stem cells with a specific molecular gene expression profilein vitro, related but not identical to true pluripotent stem cells. Under ES-cell conditions haGSC colonies could be selected and maintained in a partial pluripotent state at the molecular level, which may be related to their cell plasticity and potential to differentiate into cells of all germ layers.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3409-3409
Author(s):  
Paola Neri ◽  
Pierfrancesco Tassone ◽  
Masood Shammas ◽  
Mariateresa Fulciniti ◽  
Yu-Tzu Tai ◽  
...  

Abstract Interaction between multiple myeloma (MM) cells and the bone marrow (BM) microenvironment plays a critical role in promoting MM cell growth, survival, migration and development of drug resistance. This interaction within the bone marrow milieu is unique and its understanding is important in evaluating effects of novel agents in vitro and in vivo. We here describe a novel murine model that allows us to study the expression changes in vivo in MM cells within the human BM milieu. In this model, the green fluorescent protein (INA-6 GFP+) transduced IL-6-dependent human MM cell line, INA-6, was injected in human bone chip implanted into SCID mice. At different time points the bone chip was retrieved, cells flushed out and GFP+ MM cells were purified by CD138 MACS microbeads. Similar isolation process was used on INA-6 GFP+ cells cultured in vitro and used as control. Total RNA was isolated from these cells and gene expression profile analyzed using the HG-U133 array chip (Affymetrix) and DChip analyzer program. We have identified significant changes in expression of several genes following in vivo interaction between INA-6 and the BM microenvironment. Specifically, we observed up-regulation of genes associated with cytokines (IL-4, IL-8, IGFB 2–5) and chemokines (CCL2, 5, 6, 18, 24, CCR1, 2, 4), implicated in cell-cell signalling. Moreover genes implicated in DNA transcription (V-Fos, V-Jun, V-kit), adhesion (Integrin alpha 2b, 7, cadherin 1 and 11) and cell growth (CDC14, Cyclin G2, ADRA1A) were also up-regulated and genes involved in apoptosis and cell death (p-57, BCL2, TNF1a) were down-regulated. Using the Ingenuity Pathway Analysis the most relevant pathways modulated by the in vivo interaction between MM cells and BMSCs were IL-6, IGF1, TGF-beta and ERK/MAPK-mediated pathways as well as cell-cycle regulation and chemokine signalling. These results are consistent with previously observed in vitro cell signalling studies. Taken together these results highlight the ability of BM microenvironment to modulate the gene expression profile of the MM cells and our ability to in vivo monitor the changes. This model thus provides us with an ability to study in vivo effects of novel agents on expression profile of MM cells in BM milieu, to pre-clinically characterize their activity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3810-3810
Author(s):  
Sandra Muntión ◽  
Carlos Santamaría ◽  
Beatriz Roson ◽  
Carlos Romo ◽  
Olga López-Villar ◽  
...  

Abstract Abstract 3810 Mesenchymal stromal cells (MSC) are a non-hematopoietic BM cell population considered to be not only the osteoblastic progenitors, but also a key component of the hematopoietic microenvironment. Raaijmakers et al (Nature, 2010) have recently shown that deletion of Dicer1 in MSC-derived osteoprogenitors as well as its target gene SBDS resulted in myelodysplasia (MDS) in a murine model. We have previously confirmed these results in human MSC from MDS patients (ASH 2010, # 397). In a previous paper (Leukemia, 2009) we showed that MSC from 5q- syndrome patients were different from MSC from other types of MDS and could be involved in their development. We have hypothesized that lenalidomide, the standard treatment of 5q- patients could act not only on hematopoietic progenitors but also on the BM microenvironment. For this purpose BM-MSC from healthy donors (HD) (n=7) and 5q- syndrome patients (n=5) were expanded in vitro and treated with 50 uM lenalidomide or its solvent (DMSO) as control. RNA was obtained from MSC and DICER1, DROSHA and SBDS relative gene expression was assessed by real-time PCR using TaqMan® assay as well as several microRNAs with known role in hematopoiesis and immune system regulation. In addition, MSC gene expression profile was studied. Labeled samples were hybridized to affymetrix of oligonucleotide HU 1.OST arrays in 5q- patients (n=4) and compared with MSCs from HD (n=3). For this purpose the ratio lenalidomide-treated sample and its paired DMSO control was calculated and markers with a fold change >1.5 were selected for hierarchical clustering analysis (HCA). MSCs from 5q-syndrome showed lower expression of DICER1 when compared with those from HD (.35 x10−3 vs.20 x10−3 p=0.03) but this expression was recovered when 5q-MSCs were treated with Lenalidomide (0.32 x10−3 p= 0.34). By contrast, no differences in DROSHA expression were observed. In addition, 5q-MSC showed SBDS lower expression than HD-MSC and in both groups the expression increased when they were treated with lenalidomide fig1). When microRNAs were analyzed, we observed a lower microRNA expression in lenalidomide-treated MSC from healthy donors when was compared to paired non-treated cells, especially for miRNA-155 (p=0.028), miRNA-222 (p=0.028),and miRNA-181a (p=0.075; Table 1). By contrast, lenalidomide-treated MSC from MDS showed a trend towards higher microRNA expression in comparison to paired non-treated MSC.Table 1.HD-MSC DMSO vs LENA5q-MSC DMSO vs LENAmiRNA 1460.50 vs 0.30p=0.2490.07 vs 0.10p=0.7miRNA 1500.004 vs 0.0065p=0.60.001 vs 0.006p=0.07miRNA 1550.90 vs 0.58p=0.0280.80 vs 0.96p=0.7miRNA 181a2.47 vs 1,83p=0.0751.66 vs 2.32p=0.07miRNA 22286.2 vs 68.0p=0.02843.2 vs 56.2p=0.07 When the gene expression profile was carried out based in 421 selected probes including 306 known genes, MSC-treated cells from 5q- were separated from HD MSC by HCA (Fig2). We can conclude that Lenalidomide not only acts on HPC from 5q- patients but also on microenvironment by modifying the expression of DICER-1 and SBDS as well as the expression of some microRNAs and genes. Disclosures: San Miguel: Celgene Corp.: Membership on an entity's Board of Directors or advisory committees. del Cañizo:Celgene Corp.: Spanishn Adviory committee.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chun Yang ◽  
Si-Jia Chen ◽  
Bo-Wen Chen ◽  
Kai-Wen Zhang ◽  
Jing-Jie Zhang ◽  
...  

Sporamin, a proteinase inhibitor isolated from the sweet potato (Ipomoea batatas), has shown promising anticancer effect against colorectal cancer (CRC) in vitro and in vivo but its mechanisms of action are poorly understood. In the present study, high throughput RNA sequencing (RNA-seq) technology was applied to explore the transcriptomic changes induced by sporamin in the presence of thapsigargin (TG), a non-12-O-tetradecanolphorbol-13-acetate type cancer promoter, in the LoVo human CRC cells. Cellular total RNA was extracted from the cells after they were treated with vehicle (CTL), 1 μM of thapsigargin (TG), or 1 μM of TG plus 30 μM of sporamin (TGSP) for 24 h. The migratory capacity of the cells was determined by wound healing assay. The gene expression profiles of the cells were determined by RNA-seq on an Illumina platform. GO enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and transcription factors (TF) prediction were all performed based on the differentially expressed genes (DEGs) across groups with a series of bioinformatics tools. Finally, the effect and potential molecular targets of the sporamin at the transcriptome level were evaluated. Sporamin significantly inhibited the migration of cells induced by TG. Among the 17915 genes detected in RNA-seq, 46 DEGs were attributable to the effect of sporamin. RT-PCR experiment validated that the expression of RGPD2, SULT1A3, and BIVM-ERCC5 were up-regulated while NYP4R, FOXN1, PAK6, and CEACAM20 were down-regulated. Sporamin enhanced the mineral absorption pathway, worm longevity regulating pathway, and pyrimidine metabolism pathway. Two TFs (SMIM11A and ATOH8) were down-regulated by sporamin. HMOX1 (up-regulated) and NME1-NME2 (down-regulated) were the main nodes in a PPI network consisting of 16 DEGs that were modulated by sporamin in the presence of TG. Sporamin could favorably alter the gene expression profile of CRC cells, up-regulating the genes that contribute to the homeostasis of intracellular metal ions and the activities of essential enzymes and DNA damage repairment. More studies are warranted to verify its effect on specific genes and delineate the mechanism of action implicated in the process.


2018 ◽  
Vol 6 (3) ◽  
pp. 75-82 ◽  
Author(s):  
Artur Bryja ◽  
Marta Dyszkiewicz-Konwińska ◽  
Maurycy Jankowski ◽  
Piotr Celichowski ◽  
Katarzyna Stefańska ◽  
...  

Abstract The oral mucosa is a compound tissue composed of several cells types, including fibroblasts and keratinocytes, that are characterized by different morphology, as well as biochemical and metabolomic properties. The oral mucosal cells are the most important factors mediated between transport and drugs delivery. The changes in cellular ion homeostasis may significantly affect the bioavailability of administrated drugs and their transport across the mucous membrane. Therefore we investigated the expression profile of genes involved in ion transport and homeostasis in porcine buccal pouch mucosal cells. The oral mucosa was separated surgically and isolated enzymatically. The cells were examined during long-term in vitro culture (IVC). The cultured cells were collected at 7, 15 and 30 days of IVC and subsequently transferred to RNA isolation and next, the gene expression profile was measured using Affymetrix microarray assays. In the results, we can extract genes belonging to four ontology groups: “ion homeostasis”, “ion transport”, “metal ion transport”, and “inorganic ion homeostasis”. For TGFB1 and CCL2, we observed up-regulation after 7 days of IVC, down-regulation after 15 days of IVC and upregulation again after 30 days of IVC. The ATP13A3, ATP1B1, CCL8, LYN, STEAP1, PDPN, PTGS2, and SLC5A3genes showed high activity after day 7 of IVC, and in the days 15 and 30 of IVC showed low activity. We showed an expression profile of genes associated with the effects of ion influence on the porcine normal oral mucosal cell development in IVC. These studies may be the starting point for further research into oral diseases and will allow for the comparison of the gene expression profile of normal and disease altered cells.


Sign in / Sign up

Export Citation Format

Share Document