scholarly journals A novel Src kinase inhibitor reduces tumour formation in a skin carcinogenesis model

2008 ◽  
Vol 30 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Bryan Serrels ◽  
Alan Serrels ◽  
Susan M. Mason ◽  
Christine Baldeschi ◽  
Gabrielle H. Ashton ◽  
...  
Lung Cancer ◽  
2014 ◽  
Vol 85 (2) ◽  
pp. 245-250 ◽  
Author(s):  
Julian R. Molina ◽  
Nathan R. Foster ◽  
Thanyanan Reungwetwattana ◽  
Garth D. Nelson ◽  
Andrew V. Grainger ◽  
...  

2005 ◽  
Vol 13 (15) ◽  
pp. 4704-4712 ◽  
Author(s):  
Ram Thaimattam ◽  
Pankaj R. Daga ◽  
Rahul Banerjee ◽  
Javed Iqbal

Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Patricia Gaule ◽  
Nupur Mukherjee ◽  
Brendan Corkery ◽  
Alex Eustace ◽  
Kathy Gately ◽  
...  

In pre-clinical studies, triple-negative breast cancer (TNBC) cells have demonstrated sensitivity to the multi-targeted kinase inhibitor dasatinib; however, clinical trials with single-agent dasatinib showed limited efficacy in unselected populations of breast cancer, including TNBC. To study potential mechanisms of resistance to dasatinib in TNBC, we established a cell line model of acquired dasatinib resistance (231-DasB). Following an approximately three-month exposure to incrementally increasing concentrations of dasatinib (200 nM to 500 nM) dasatinib, 231-DasB cells were resistant to the agent with a dasatinib IC50 value greater than 5 μM compared to 0.04 ± 0.001 µM in the parental MDA-MB-231 cells. 231-DasB cells also showed resistance (2.2-fold) to the Src kinase inhibitor PD180970. Treatment of 231-DasB cells with dasatinib did not inhibit phosphorylation of Src kinase. The 231-DasB cells also had significantly increased levels of p-Met compared to the parental MDA-MB-231 cells, as measured by luminex, and resistant cells demonstrated a significant increase in sensitivity to the c-Met inhibitor, CpdA, with an IC50 value of 1.4 ± 0.5 µM compared to an IC50 of 6.8 ± 0.2 µM in the parental MDA-MB-231 cells. Treatment with CpdA decreased p-Met and p-Src in both 231-DasB and MDA-MB-231 cells. Combined treatment with dasatinib and CpdA significantly inhibited the growth of MDA-MB-231 parental cells and prevented the emergence of dasatinib resistance. If these in vitro findings can be extrapolated to human cancer treatment, combined treatment with dasatinib and a c-Met inhibitor may block the development of acquired resistance and improve response rates to dasatinib treatment in TNBC.


2001 ◽  
Vol 75 (4) ◽  
pp. 1949-1957 ◽  
Author(s):  
K. S. Choi ◽  
H. S. Jun ◽  
H. N. Kim ◽  
H. J. Park ◽  
Y. W. Eom ◽  
...  

ABSTRACT Soluble mediators such as interleukin-1β, tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic β cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus. The tyrosine kinase signaling pathway was shown to be involved in EMC-D virus-induced activation of macrophages. This investigation was initiated to determine whether the Src family of kinases plays a role in the activation of macrophages, subsequently resulting in the destruction of β cells, in mice infected with a low dose of EMC-D virus. We examined the activation of p59/p56Hck, p55Fgr, and p56/p53Lynin macrophages from DBA/2 mice infected with the virus. We found that p59/p56Hck showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55Fgr and p56/p53Lyn did not. The p59/p56Hck activity was closely correlated with the tyrosine phosphorylation level of Vav. Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56Hck activity and almost complete inhibition of the production of TNF-α and iNOS in macrophages and the subsequent prevention of diabetes in mice. On the basis of these observations, we conclude that the Src kinase, p59/p56Hck, plays an important role in the activation of macrophages and the subsequent production of TNF-α and nitric oxide, leading to the destruction of pancreatic β cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus.


2011 ◽  
Vol 85 (12) ◽  
pp. 5995-6007 ◽  
Author(s):  
S. Sharma ◽  
S. Mulik ◽  
N. Kumar ◽  
A. Suryawanshi ◽  
B. T. Rouse

2011 ◽  
Author(s):  
Keith B. Glaser ◽  
Junling Li ◽  
Patrick A. Marcotte ◽  
Terrance J. Magoc ◽  
Jun Guo ◽  
...  
Keyword(s):  

2019 ◽  
Vol 30 (5) ◽  
pp. 566-578 ◽  
Author(s):  
Shuling Fan ◽  
Caroline M. Weight ◽  
Anny-Claude Luissint ◽  
Roland S. Hilgarth ◽  
Jennifer C. Brazil ◽  
...  

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


Sign in / Sign up

Export Citation Format

Share Document