scholarly journals Investigation of Vitamin K Quinone Metabolism by Human Gut Bacteria

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 392-392
Author(s):  
Jessie Ellis ◽  
Xueyan Fu ◽  
J Philip Karl ◽  
Patrick Radcliffe ◽  
Jason Soares ◽  
...  

Abstract Objectives Vitamin K (VK) is a family of structurally-related quinones, phylloquinone (PK) and menaquinones (MKn, n = prenyl units in side chain), that share a common napthoquinone ring (menadione, MD). VK quinones function as an essential dietary nutrient for humans. MD is considered a pro-vitamin form of VK. Plants and bacteria that produce VK quinones (PK and MKn, respectively) use them as an electron carrier in energy production. Little is known about the interaction of dietary VK quinones with gut bacteria, which may be bi-directional. The objective of this study was to investigate the influence of VK quinones and MD on human gut bacteria composition and MKn production. Methods Stool from 5 healthy male donors was pooled and inoculated in bioreactors under conditions mimicking the colon (anaerobic, pH 6.8, 37°C) for 48 h. Bioreactors were treated with deuterium (2H)-labeled quinones (2H-PK, 2H-MK4, 2H-MK9 or 2H-MD); no quinones (cell controls); or 2H-quinone treatment with no stool (cell-free controls). Culture aliquots were collected at 0, 5, 10, 24, and 48 h, and separated into pellet and supernatant fractions. Experiments were conducted in triplicate. All fractions were analyzed for VK quinone content using LC-MS. DNA from 0 and 24 h pellet fractions was extracted and amplified for paired-end 16S sequencing on an Illumina MiSeq 2500. Differences in bacterial composition were assessed using PERMANOVA. Results Supplemented 2H-quinones accumulated in the pellet fraction over time. This was not observed in cell-free controls and was thus not a function of culture media solubility. Endogenous (unlabeled) production of MKn was unaffected by supplementation of 2H-quinones. Generated 2H-MKn (2H-MK4, 2H-MK9, 2H-MK10, and 2H-MK11) were only detected in 2H-MD supplemented vessels. Community-wide bacterial composition significantly differed between 0 h and 24 h (r2 = 0.85, P = 0.001), but not by quinone treatment. Conclusions PK and MKn, dietary viamin K quinones, were not transformed by gut microbes to MKn in vitro, whereas the pro-vitamin quinone MD was transformed to MKn of multiple side chain lengths. Although no quinone induced community-wide changes in bacteria composition, additional analyses are needed to assess species-specific growth promotion. Funding Sources USDA ARS and DOD Health Program.

PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0201073 ◽  
Author(s):  
Samantha Yuille ◽  
Nicole Reichardt ◽  
Suchita Panda ◽  
Hayley Dunbar ◽  
Imke E. Mulder

2020 ◽  
Vol 11 ◽  
Author(s):  
Miao Chen ◽  
Bei Fan ◽  
Shujun Liu ◽  
Khandaker Md Sharif Uddin Imam ◽  
Yingying Xie ◽  
...  
Keyword(s):  

1973 ◽  
Vol 138 (3) ◽  
pp. 574-592 ◽  
Author(s):  
J. D. Broome ◽  
M. W. Jeng

Numerous lines of mouse lymphoid tumors (13 of 22 tested) showed, with increased sensitivity, a property of normal mouse splenic lymphocytes, the potential for growth promotion in vitro by specific thiols added to standard culture media. For lymphoma L1210 (V), structure activity relationships were examined; 9 of 30 thiols promoted growth; the most active was α-thioglycerol, effective at 0.2 µM. Thiols became oxidized under conditions of tissue culture and had half-lives of less than 8 h. Disulfides of active thiols promoted growth of lymphoma cells. The mitogenic response of splenic lymphocytes to lectins was increased by thiols-disulfides which promoted the growth of lymphoma cells, but the response varied with the mitogen preparation used and under some conditions thiols-disulfides were inhibitory.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Christian Apolinaris Lombogia ◽  
Max Tulung ◽  
Jimmy Posangi ◽  
Trina Ekawati Tallei

Understanding the honeybee gut bacteria is an essential aspect as honeybees are the primary pollinators of many crops. In this study, the honeybee-associated gut bacteria were investigated by targeting the V3-V4 region of 16S rRNA genes using the Illumina MiSeq. The adult worker was captured in an urban area in a dense settlement. In total, 83,018 reads were obtained, revealing six phyla from 749 bacterial operational taxonomic units (OTUs). The gut was dominated by Proteobacteria (58% of the total reads, including Enterobacteriaceae 28.2%, Erwinia 6.43%, and Klebsiella 4.90%), Firmicutes (29% of the total reads, including Lactococcus garvieae 13.45%, Lactobacillus spp. 8.19%, and Enterococcus spp. 4.47%), and Actinobacteria (8% of the total reads, including Bifidobacterium spp. 7.96%). Many of these bacteria belong to the group of lactic acid bacteria (LAB), which was claimed to be composed of beneficial bacteria involved in maintaining a healthy host. The honeybee was identified as Apis nigrocincta based on an identity BLAST search of its COI region. This study is the first report on the gut microbial community structure and composition of A. nigrocincta from Indonesia.


2012 ◽  
Vol 109 (8) ◽  
pp. 1433-1441 ◽  
Author(s):  
Laura Hanske ◽  
Wolfram Engst ◽  
Gunnar Loh ◽  
Silke Sczesny ◽  
Michael Blaut ◽  
...  

Cyanidin 3-glucoside (C3G) is one of the major dietary anthocyanins implicated in the prevention of chronic diseases. To evaluate the impact of human intestinal bacteria on the fate of C3G in the host, we studied the metabolism of C3G in human microbiota-associated (HMA) rats in comparison with germ-free (GF) rats. Urine and faeces of the rats were analysed for C3G and its metabolites within 48 h after the application of 92 μmol C3G/kg body weight. In addition, we tested the microbial C3G conversion in vitro by incubating C3G with human faecal slurries and selected human gut bacteria. The HMA rats excreted with faeces a three times higher percentage of unconjugated C3G products and a two times higher percentage of conjugated C3G products than the GF rats. These differences were mainly due to the increased excretion of 3,4-dihydroxybenzoic acid, 2,4,6-trihydroxybenzaldehyde and 2,4,6-trihydroxybenzoic acid. Only the urine of HMA rats contained peonidin and 3-hydroxycinnamic acid and the percentage of conjugated C3G products in the urine was decreased compared with the GF rats. Overall, the presence of intestinal microbiota resulted in a 3·7 % recovery of the C3G dose in HMA rats compared with 1·7 % in GF rats. Human intestinal bacteria rapidly degraded C3G in vitro. Most of the C3G products were also found in the absence of bacteria, but at considerably lower levels. The higher concentrations of phenolic acids observed in the presence of intestinal bacteria may contribute to the proposed beneficial health effects of C3G.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Ilaria Carafa ◽  
Domenico Masuero ◽  
Urska Vrhovsek ◽  
Giovanni Bittante ◽  
Elena Franciosi ◽  
...  

AbstractConjugated linoleic acids (CLAs) show a number of putative health-promoting activities including anti-carcinogenic, anti-adipogenic, anti-diabetogenic, anti-inflammatory and antioxidant actions. CLAs are naturally produced by ruminal bacteria and several studies demonstrate that various lactobacilli and bifidobacteria are also able to produce CLAs in vitro from linoleic acid (LA). However, the ability of the human gut microbiota to produce CLA is less extensively studied. Our hypothesis is that the human gut microbiota is able to convert LA to CLA, and that the readily fermentable fiber inulin would positively modulate the growth of CLA-producing bacteria and, consequently increase the CLA content in the intestine.The capability of the faecal microbiota from five healthy donors to produce CLA was tested in anaerobic batch cultures for 48 hours at pH 5.5 and 6.5. Test treatments were linoleic acid (LA; 1 mg/mL) + bovine serum albumin (BSA; 0.2 mg/mL), and LA (1 mg/mL) + BSA (0.2 mg/mL) + inulin (1%, w/v) compared to a control BSA (0.2 mg/mL) fermentation. The microbial composition was analyzed 0, 24 and 48 hours after starting the fermentation by 16S rRNA gene Illumina MiSeq sequencing (V3-V4 region). CLAs were quantified by Ultra performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS) and bi-dimensional gas chromatography (GC x GC).The inclusion of LA + BSA + inulin at pH 5.5 significantly increased the relative abundance of Collinsella aerofaciens (p < 0.05), and tended to increase the relative abundance of bifidobacteria. LA + BSA + inulin at both pH 5.5 and 6.5 reduced the relative abundance of Parabacteroides, Bilophila, Clostridia and Enterobacteriaceae (p < 0.05). The concentration of CLA, in particular the isomer cis9,trans11 C18:2, was significantly higher in the LA + BSA + inulin group at pH 5.5 after 24 and 48 hours fermentation.The data show that the treatment LA + BSA + inulin at pH 5.5 induce substantial changes in microbiota composition, including bifidogenesis and CLA production in a human intestinal microbiota model. The changes of relative abundance detected are consistent with changes in gut bacteria previously linked to human health. Collinsella aerofaciens has been reported for reducing bloating, in particular in subjects suffering from irritable bowel syndrome, while Clostridia, Bilophila and Enterobacteriaceae causes human infections. In addition, the increase of bifidobacteria and LAB, which have previously been shown in vitro to produce CLA, may also be involved in CLA production under simulated cecal microbiome. These preclinical observations warrant confirmation in suitably designed animal and human mechanistic studies.


2013 ◽  
Vol 4 (5) ◽  
pp. 784 ◽  
Author(s):  
Louise K. Vigsnaes ◽  
Hiroyuki Nakai ◽  
Lene Hemmingsen ◽  
Joakim M. Andersen ◽  
Sampo J. Lahtinen ◽  
...  

2011 ◽  
Vol 59 (20) ◽  
pp. 10901-10906 ◽  
Author(s):  
Oswaldo Hernandez-Hernandez ◽  
Gregory L. Côté ◽  
Sofia Kolida ◽  
Robert A. Rastall ◽  
M. Luz Sanz

2021 ◽  
Vol 13 (14) ◽  
pp. 7792
Author(s):  
Abdul Wahab Ajmal ◽  
Saleha Saroosh ◽  
Shah Mulk ◽  
Muhammad Nadeem Hassan ◽  
Humaira Yasmin ◽  
...  

The present study explored the plant growth promotion and bioremediation potential of bacteria inhabiting wastewater irrigated agricultural soils. Thirty out of 75 bacterial isolates (40%), 29/75 (39%) and 28/75 (37%) solubilized Zn, K and PO4 during plate essays respectively. Fifty-six percent of the isolates produced siderophores, while 30% released protease in vitro. Seventy-four percent of bacteria resisted Pb, Ni and Cd at various concentrations added to the culture media plates. Sixteen out of 75 (26%) isolates were able to fix N in Nbf medium. Among these 16 N fixers, N fixing nifH, nifD and nifK genes was detected through PCR in 8, 7 and 1 strain respectively using gene specific primers designed in the study with Enterobacter sp. having all three (nifHKD) genes. Isolated bacteria showed resemblance to diverse genera such as Bacillus, Pseudomonas, Enterobacter, Citrobacter, Acinetobacter, Serratia, Klebsiella and Enterococcus based on 16S rRNA gene sequence analysis. In addition to showing the best mineral solubilization and metal resistance potential, Citrobacter sp. and Enterobacter sp. also removed 87%, 79% and 43% and 86%, 78% and 51% of Ni, Cd and Pb, respectively, from aqueous solution. These potent bacteria may be exploited both for bioremediation and biofertilization of wastewater irrigated soils leading to sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document