scholarly journals Time of Feeding Alters Obesity-Associated Parameters and Gut Bacterial Communities, but Not Fungal Populations, in C57BL/6 Male Mice

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Marie van der Merwe ◽  
Sunita Sharma ◽  
Jade L Caldwell ◽  
Nicholas J Smith ◽  
Charles K Gomes ◽  
...  

ABSTRACT Background Fasting and timed feeding strategies normalize obesity parameters even under high-fat dietary intake. Although previous work demonstrated that these dietary strategies reduce adiposity and improve metabolic health, limited work has examined intestinal microbial communities. Objectives We determined whether timed feeding modifies the composition of the intestinal microbiome and mycobiome (yeast and fungi). Methods Male C57BL/6 mice were fed a high-fat diet (HF) for 6 wk. Animals were then randomly assigned to the following groups (n = 8–10/group): 1) HF ad libitum; 2) purified high-fiber diet (Daniel Fast, DF); 3) HF–time-restricted feeding (TRF) (6 h); 4) HF–alternate-day fasting (ADF); or 5) HF at 80% total caloric restriction (CR). After 8 wk, obesity and gut parameters were characterized. We also examined changes to the gut microbiome and mycobiome before, during, and following dietary interventions. Results Body mass gain was reduced with all restricted dietary groups. HF-fed microbiota displayed lower α-diversity along with reduced phylum levels of Bacteroidetes and increased Firmicutes. Animals switched from HF to DF demonstrated a rapid transition in bacterial taxonomic composition, α-, and β-diversity that initially resembled HF, but was distinct after 4 and 8 wk of DF feeding. Time-or calorie-restricted HF-fed groups did not show changes at the phylum level, but α-diversity was increased, with specific genera altered. Six weeks of HF feeding reduced various fungal populations, particularly Alternaria, Aspergillus, Cladosporium, and Talaromyces, and increased Candida, Hanseniaspora, and Kurtzmaniella. However, 8 wk of intervention did not change the fungal populations, with the most abundant genera being Candida, Penicillium, and Hanseniaspora. Conclusions These data suggest that timed-feeding protocols and diet composition do not significantly affect the gut fungal community, despite inducing measurable shifts in the bacterial population that coincide with improvements in metabolism.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Marie van der Merwe ◽  
Sunita Sharma ◽  
Jade Caldwell ◽  
Nicholas Smith ◽  
Richard Bloomer ◽  
...  

Abstract Objectives Time-restricted feeding strategies have been shown to normalize obesity parameters, even under high fat feeding conditions. The objective of this study is to examine whether timed feeding alters parameters of gut health or intestinal microbiome composition. Methods C57BL/6 male mice were randomized to Chow or a high fat diet (HFD) for 6 weeks, followed by a switch from HFD to 1) Chow (sChow), 2) Purified Vegan – Daniel Fast (DF), 3) HFD ad lib, 4) HFD time restricted (TRF), 5) HFD alternative day fasting (ADF), or 6) HFD 60% caloric restriction (CR) for an additional 8 weeks. Results We observed that body mass gain was reduced for all intervention groups (P ≤ 0.0001). Small intestinal length and cecal weight were increased in Chow, sChow and DF (P ≤ 0.02), while total cecal short chain fatty acid (SCFA) concentration was non-significantly increased for all groups consuming the HFD. Proprionate was specifically increased in the Chow, sChow and DF groups (P ≤ 0.02). Chow fed microbiota remained stable in taxonomic composition and alpha diversity (Shannon diversity index) throughout the study. HF fed microbiota displayed lower alpha diversity along with reduced phylum levels of Bacteroidetes and increase Firmicutes. Animals switched from HF to Chow demonstrated a rapid transition in taxonomic composition, alpha, and beta diversity that initially resembled HF, but clustered closely with Chow by weeks 4 and 8 of intervention. After 8 weeks on the respective dietary protocols, alpha diversity of the DF was most similar to Chow fed animals and also resulted in the largest increase in Bacteriodetes and largest decrease in Firmicutes. Beta diversity (weighted UniFrac) showed Chow, sChow, and DF clustered together, while high fat fed groups (HF, CR, ADF, and TRF) clustered. Compared with HF controls, CR and TRF led to a relative increase in the classes Clostridia, Deferribacteres and Deltaproteobacteria. The taxonomic composition and alpha diversity of ADF fasting resembled HF under fed conditions, while ADF under fasting conditions more closely resembled CR and TRF. Conclusions In conclusion, timed feeding on a high fat diet did not result in significant changes in the microbiome, demonstrating that diet, and not fasting is the major determinant for microbiome composition. Funding Sources University of Memphis & Children's Foundation Research Institute, Memphis.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S8-S9
Author(s):  
Julia Fritsch ◽  
Alejandra Quintero ◽  
Judith Pignac-Kobinger ◽  
Luis Garces ◽  
Ana Santander ◽  
...  

Abstract Background and Aims There is a lack of evidence-based dietary interventions in ulcerative colitis (UC) management. A diet high in fat and animal meat has been linked to an increased risk of UC. The aim of our study was to use a multilayered, multi-omic approach to comprehensively characterize the effect of a low fat, high fiber diet or a high fat diet in UC patients. Methods We enrolled patients with UC who were in remission or had mild disease with a flare within the last 18 months. We used a cross-over design in which patients received two dietary interventions: a low fat diet (LFD), containing 10% total calories from fat with an omega 6 to 3 ratio of below 3:1, and an idealized standard American diet (SAD), containing 35–40% total calories from fat with an omega 6 to 3 ratio of 20–30:1. Each diet was four weeks long with a two-week wash-out in between. The diet was catered and delivered to patients’ homes. Clinical symptoms, quality of life, and biochemical data were collected. Stool was collected for microbiome and metabolomic analyses. The primary endpoint was to determine adherence to a specified diet using catered meals; the secondary endpoint was to determine the clinical and subclinical effects of a low fat, high fiber diet or high fat diet in UC. Results Baseline diets varied widely but were generally lower in fiber as well as fruits and vegetables and higher in saturated fat than either of the study diets. There was a high rate of adherence to catered meals (SAD=86.68%, LFD=84.8%) with a 96.8% and 94.33% adherence to fat for SAD and LFD respectively. Patients that started in remission remained in remission (partial Mayo and sIBDQ). Following a LFD, patients saw a 20% improvement in their quality of life as measured by sIBDQ compared to their baseline. The effect of diet intervention on microbial diversity was reflected in the beta diversity with a significant increase in Faecalibacterium prausnitzii after LFD. CRP, sIBDQ, IL-6, and IL1β had a significant effect on overall gut microbiota composition as measured by Bray Curtis beta diversity (PERMANOVA)(P<0.007, P<0.001, P<0.021, P<0.048 respectively). The top taxa that contributes the most to this microbial variation from these clinical parameters was Faecalibacterium prausnitzii. Patients following a SAD had an increase in lauric acid, myristic acid, and N-oleoyl-L-phenylalanine with an increase in omega-6 metabolism pathways. Patients following a LFD had higher glycine, alanine, and phenyllactic acid with omega 3 metabolism pathways increased after LFD. Conclusions A low fat, high fiber diet is well tolerated and did not increase biochemical markers of inflammation. Catered meals and collection of microbiome, metabolome and biochemical data may allow early stratification of diet responders.


2019 ◽  
Author(s):  
Keith Z. Hazleton ◽  
Casey G. Martin ◽  
Kathleen L. Arnolds ◽  
Nichole M. Nusbacher ◽  
Nancy Moreno-Huizar ◽  
...  

AbstractClostridoides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea and there has been a steady increase in the number of new infections, emphasizing the importance of novel prevention strategies. Use of broad-spectrum antibiotics and disruption of the intestinal microbiome is one of the most important risk factors of CDI. We used a murine model of antibiotic-induced CDI to investigate the relative contributions of high dietary fat and low dietary fiber on disease pathogenesis. We found that high fat, but not low fiber resulted in increased mortality from CDI (HR 4.95) and increased levels of C. difficile toxin production compared to a regular low-fat/high-fiber mouse diet even though we did not observe a significant change in C. difficile carriage. The high-fat diet also increased levels of primary bile acids known to be germination factors for C. difficile spores. Mice fed low-fat/low-fiber diets did not show increased CDI pathogenesis, but did have a larger antibiotic-induced gut microbiome disturbance compared to mice fed a high-fiber diet, characterized by a greater decrease in alpha diversity. This microbiome disturbance was associated with a loss of secondary bile acids and short chain fatty acids, which are both microbial metabolic products previously shown to protect against CDI. These data suggest that a low-fiber diet contributes to antibiotic-induced dysbiosis, while a high-fat diet promotes CDI pathogenesis. These findings indicate that dietary interventions that increase fiber and decrease fat may be an effective prevention strategy for individuals at high risk of CDI.One Sentence SummaryHigh dietary fat promoted mortality in a mouse model of antibiotic-induced C. difficile infection and low dietary fiber caused higher microbiome disturbance upon broad-spectum antibiotic exposure, suggesting that diets low in fat and high in fiber may protect against C. difficile pathogenesis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Marie van der Merwe ◽  
Sunita Sharma ◽  
Jade Caldwell ◽  
Nicholas Smith ◽  
Richard Bloomer ◽  
...  

Abstract Objectives The gut microbiome participates in host metabolic regulation. While the vast majority of microbiome research has focused on bacterial populations, other microorganisms also colonize the mammalian intestine and likely play functionally important roles in host metabolism. The objective of current study was to characterize the role of dietary composition and timing strategies upon gut fungal populations. Methods C57BL/6 male mice were randomized to a Chow diet or a high-fat diet (HFD) for 6 weeks, followed by a switch from HFD to 1) Chow (sChow), 2) Purified High Fiber – Daniel Fast (DF), 3) HFD ad lib, 4) HFD time restricted (TRF), 5) HFD alternative day fasting (ADF), or 6) HFD 60% caloric restriction (CR) for an additional 8 weeks. Ileal, cecal and serial fecal samples were collected for next generation sequencing of ITS2 rRNA to examine the gut mycobiome. Results We observed dramatic reductions in alpha diversity in fecal fungal populations when animals consumed the HFD compared with Chow. HFD resulted in dramatic reduction in the relative abundance of the fungal order Saccharomyces, with a concomitant increases in the genus Candida and Hanseniaspora. In response to dietary switch from HFD to Chow, fungal taxonomic composition, alpha, and beta diversity transitioned to a population clustering more similarity with Chow by weeks 4 and 8 of intervention. After 8 weeks on the respective dietary interventions, alpha diversity of the ileal, cecal and fecal fungal population in mice consuming DF or various HFD fasting protocols remained similar to the HFD controls. Saccharomycetales remained the dominant genus present in HFD and DF groups. However, amongst these groups, the DF group (fecal sample) showed the greatest increase in Saccharomyces, but time-restricted feeding protocols also showed increased levels of Saccharomyces. Conclusions While fasting protocols on HFD are associated with improved metabolic outcomes, these data demonstrate that – similar to microbial populations within the microbiome – diet remains the largest driver of microorganism community composition. To our knowledge, this is the first investigation into the role of dietary timing strategies upon the gut fungal communities ever reported. Funding Sources University of Memphis. Children's Foundation Research Institute, Memphis.


2021 ◽  
Vol 13 (11) ◽  
pp. 6081
Author(s):  
Pragna Prathap ◽  
Surinder Singh Chauhan ◽  
Brian J. Leury ◽  
Jeremy James Cottrell ◽  
Frank Rowland Dunshea

The increasing need for sustainable livestock production demands more research in the field of greenhouse gas (GHG), particularly methane (CH4), measurement and mitigation. Dietary interventions, management, and biotechnological strategies to reduce the environmental impacts and economic implications of enteric CH4 emissions are needed. While the use of biotechnological interventions and management strategies can be challenging on a routine basis, feed additive supplementation appears to be the most researched, developed, and ready to use strategy to mitigate enteric CH4 emissions. This paper discusses various recently developed feeding strategies to reduce enteric CH4 emissions in livestock. Additionally, the manuscript reviews various technologies developed for CH4 estimation since the accurate and reliable estimation of CH4 emissions can be a limiting step in the development and adoption of any mitigation strategy.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 18-19
Author(s):  
Martin Nyachoti ◽  
Jinyoung Lee

Abstract Dietary manipulation with respect to crude protein (CP) content has been suggested as part of the overall strategy for the nutritional management of weanling pigs to improve intestinal health. This has focused on the use of low CP diets that are appropriately fortified with crystalline amino acids (AA). Use of low CP diets minimizes the amount of undigested dietary protein entering the large intestine and being subjected to bacterial fermentation. This is important because protein fermentation leads to the production of toxic metabolites and encourages the proliferation of pathogenic bacteria, thus causing enteric problems such as post-weaning diarrhea. There have been considerable efforts to elucidate the mechanisms underlying the potential benefits of feeding low CP diets to piglets. In addition to impacting the intestinal microbiome and its associated activities, it is clear that feeding a low CP diets interferes with the attachment of enterotoxigenic E. coli to the intestinal mucosa, thus minimizing its ability to cause disease. Another area of interest has been how use low CP diets in combination with other dietary manipulations to further enhance intestinal health in piglets. In this regards, existing evidence suggests that a low CP diet may be used in combination with other dietary interventions, such as probiotics and dietary fiber, to further enhance gut health outcomes in piglets. Also, addressing the potential reduction in piglet performance when feeding low CP diets by looking more into diet formulation to avoid deficiencies of essential AA or even some of non-essential AA, is critical for successful use low CP diets. Based on the available information, a reduction of dietary protein by four percentage units coupled with appropriate AA supplementation can be a useful dietary strategy to improve intestinal health.


Author(s):  
Marc Oliva ◽  
Pierre H. H. Schneeberger ◽  
Victor Rey ◽  
Matthew Cho ◽  
Rachel Taylor ◽  
...  

Abstract Background Oral and gut microbiomes have emerged as potential biomarkers in cancer. We characterised the oral and gut microbiomes in a prospective observational cohort of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) patients and evaluated the impact of chemoradiotherapy (CRT). Methods Saliva, oropharyngeal swabs over the tumour site and stool were collected at baseline and post-CRT. 16S RNA and shotgun metagenomic sequencing were used to generate taxonomic profiles, including relative abundance (RA), bacterial density, α-diversity and β-diversity. Results A total of 132 samples from 22 patients were analysed. Baseline saliva and swabs had similar taxonomic composition (R2 = 0.006; p = 0.827). Oropharyngeal swabs and stool taxonomic composition varied significantly by stage, with increased oral RA of Fusobacterium nucleatum observed in stage III disease (p < 0.05). CRT significantly reduced the species richness and increased the RA of gut-associated taxa in oropharyngeal swabs (p < 0.05), while it had no effect in stool samples. These findings remained significant when adjusted by stage, smoking status and antibiotic use. Conclusions Baseline oral and gut microbiomes differ by stage in this HPV+ cohort. CRT caused a shift towards a gut-like microbiome composition in oropharyngeal swabs. Stage-specific features and the transitions in oral microbiome might have prognostic and therapeutic implications.


2020 ◽  
Author(s):  
Breann E Abernathy ◽  
Tonya C Schoenfuss ◽  
Allison S Bailey ◽  
Daniel D Gallaher

ABSTRACT Background Prebiotic dietary fibers change the intestinal microbiome favorably and provide a health benefit to the host. Objectives Polylactose is a novel fiber, synthesized by extrusion of lactose. We evaluated its prebiotic activity by determining its fermentability, effect on the microbiota, and effects on adiposity and liver lipids in a diet-induced obesity animal model. Methods Male Wistar rats (4–5 wk old) were fed normal-fat (NF, 25% fat energy) or high-fat (HF, 51% fat energy) diets containing different fibers (6% fiber of interest and 3% cellulose, by weight), including cellulose (NFC and HFC, negative and positive controls, respectively), polylactose (HFPL), lactose matched to residual lactose in the HFPL diet, and 2 established prebiotic fibers: polydextrose (HFPD) and fructooligosaccharide (HFFOS). After 10 wk of feeding, organs were harvested and cecal contents collected. Results HFPL animals had greater cecum weight (3 times greater than HFC) and lower cecal pH (∼1 pH unit lower than HFC) than all other groups, suggesting that polylactose is more fermentable than other prebiotic fibers (HFPD, HFFOS; P &lt; 0.05). HFPL animals also had increased taxonomic abundance of the probiotic species Bifidobacterium in the cecum relative to all other groups (P &lt; 0.05). Epididymal fat pad weight was significantly decreased in the HFPL group (29% decrease compared with HFC) compared with all other HF groups (P &lt; 0.05) and did not differ from the NFC group. Liver lipids and cholesterol were reduced in HFPL animals when compared with HFC animals (P &lt; 0.05). Conclusions Polylactose is a fermentable fiber that elicits a beneficial change in the gut microbiota as well as reducing adiposity in rats fed HF diets. These effects of polylactose were greater than those of 2 established prebiotics, fructooligosaccharide and polydextrose, suggesting that polylactose is a potent prebiotic.


2020 ◽  
Vol 65 (No. 8) ◽  
pp. 281-294
Author(s):  
Jansller Genova ◽  
Antonio Melo ◽  
Paulo Rupolo ◽  
Silvana Carvalho ◽  
Leandro Costa ◽  
...  

Weaning is considered the “critical window” in the piglet’s life because it is associated with several stress factors, such as loss of contact with the mother and original litter, solid diet, environmental and structural changes, and the establishment of a new hierarchy. During this abrupt period, several events such as reduced feed intake, high morbidity, susceptibility to enteric infections and post-weaning diarrhoea are observed. The nutritional landscape of the piglet gut is modified, which can compromise the maturity of the gastrointestinal system, the stable intestinal microbiome and the active immunity developed as an indicator of intestinal health. However, with increased awareness of feed safety issues and the development of drug-resistant bacteria, the interest in producing pigs without the use of antimicrobial growth promoters (AGP) is increasing, since long-term use and therapeutic doses of AGP can contribute to the reduction of bacterial diversity and increase of inflammatory bowel disease (IBD). Thus, the most widely researched alternatives include the use of feed additives, feeding strategies, nutraceuticals/functional foods and available handling that can reduce the risk of IBD beyond basic nutritional functions. Studies have reported intestinal alkaline phosphatase as a new nutritional therapy associated with intestinal health which may be a “key additive” in the AGP replacement. In this review article, the purpose is to show some current aspects of feed additive research, addressing a concept of the “intestinal health” from different points of view and properties of alkaline phosphatase.


Sign in / Sign up

Export Citation Format

Share Document