Specialized Somatosensory–Motor Integration Functions in Musicians

2019 ◽  
Vol 30 (3) ◽  
pp. 1148-1158 ◽  
Author(s):  
Masato Hirano ◽  
Yudai Kimoto ◽  
Shinichi Furuya

Abstract Somatosensory signals play roles in the fine control of dexterous movements through a somatosensory–motor integration mechanism. While skilled individuals are typically characterized by fine-tuned somatosensory functions and dexterous motor skills, it remains unknown whether and in what manner their bridging mechanism, the tactile–motor and proprioceptive–motor integration functions, plastically changes through extensive sensorimotor experiences. Here, we addressed this issue by comparing physiological indices of these functions between pianists and nonmusicians. Both tactile and proprioceptive stimuli to the right index finger inhibited corticospinal excitability measured by a transcranial magnetic stimulation method. However, the tactile and proprioceptive stimuli exerted weaker and stronger inhibitory effects, respectively, on corticospinal excitability in pianists than in nonmusicians. The results of the electroencephalogram measurements revealed no significant group difference in the amplitude of cortical responses to the somatosensory stimuli around the motor and somatosensory cortices, suggesting that the group difference in the inhibitory effects reflects neuroplastic adaptation of the somatosensory–motor integration functions in pianists. Penalized regression analyses further revealed an association between these integration functions and motor performance in the pianists, suggesting that extensive piano practice reorganizes somatosensory–motor integration functions so as to enable fine control of dexterous finger movements during piano performances.

2021 ◽  
Author(s):  
Weihong Yuan ◽  
Jonathan Dudley ◽  
Alexis B Slutsky-Ganesh ◽  
James Leach ◽  
Pete Scheifele ◽  
...  

ABSTRACT Introduction Special Weapons and Tactics (SWAT) personnel who practice breaching with blast exposure are at risk for blast-related head trauma. We aimed to investigate the impact of low-level blast exposure on underlying white matter (WM) microstructure based on diffusion tensor imaging (DTI) and neurite orientation and density imaging (NODDI) in SWAT personnel before and after breacher training. Diffusion tensor imaging is an advanced MRI technique sensitive to underlying WM alterations. NODDI is a novel MRI technique emerged recently that acquires diffusion weighted data from multiple shells modeling for different compartments in the microstructural environment in the brain. We also aimed to evaluate the effect of a jugular vein compression collar device in mitigating the alteration of the diffusion properties in the WM as well as its role as a moderator on the association between the diffusion property changes and the blast exposure. Materials and Methods Twenty-one SWAT personnel (10 non-collar and 11 collar) completed the breacher training and underwent MRI at both baseline and after blast exposure. Diffusion weighted data were acquired with two shells (b = 1,000, 2,000 s/mm2) on 3T Phillips scanners. Diffusion tensor imaging metrices, including fractional anisotropy, mean, axial, and radial diffusivity, and NODDI metrics, including neurite density index (NDI), isotropic volume fraction (fiso), and orientation dispersion index, were calculated. Tract-based spatial statistics was used in the voxel-wise statistical analysis. Post hoc analyses were performed for the quantification of the pre- to post-blast exposure diffusion percentage change in the WM regions with significant group difference and for the assessment of the interaction of the relationship between blast exposure and diffusion alteration. Results The non-collar group exhibited significant pre- to post-blast increase in NDI (corrected P < .05) in the WM involving the right internal capsule, the right posterior corona radiation, the right posterior thalamic radiation, and the right sagittal stratum. A subset of these regions showed significantly greater alteration in NDI and fiso in the non-collar group when compared with those in the collar group (corrected P < .05). In addition, collar wearing exhibited a significant moderating effect for the alteration of fiso for its association with average peak pulse pressure. Conclusions Our data provided initial evidence of the impact of blast exposure on WM diffusion alteration based on both DTI and NODDI. The mitigating effect of WM diffusivity changes and the moderating effect of collar wearing suggest that the device may serve as a promising solution to protect WM against blast exposure.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woo-Sung Kim ◽  
Guangfan Shen ◽  
Congcong Liu ◽  
Nam-In Kang ◽  
Keon-Hak Lee ◽  
...  

Abstract Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.


1998 ◽  
Vol 79 (5) ◽  
pp. 2794-2803 ◽  
Author(s):  
Gordon L. Shulman ◽  
Jacob Schwarz ◽  
Francis M. Miezin ◽  
Steven E. Petersen

Shulman, Gordon L., Jacob Schwarz, Francis M. Miezin, and Steven E. Petersen. Effect of motion contrast on human cortical responses to moving stimuli. J. Neurophysiol. 79: 2794–2803, 1998. The cortical areas activated by motion-defined contours were studied in humans using positron emission tomography (PET). Subjects observed four types of random dot fields, displayed through a 21° diam aperture: unidirectional motion of a translating dot field, motion in opposing directions of two superimposed translating fields, motion in opposing directions of dots in contiguous spatial regions (motion contrast), producing a square wave grating defined by motion, and luminance variation of stationary dots in contiguous spatial regions, producing a square wave grating defined by luminance. Relative to a static dot field, the unidirectional motion condition activated areas previously described, including areas 17/18, lateral temporal-occipital–parietal cortex (MT/MST), and the superior temporal sulcus. Motion-defined gratings increased the activation of areas 17/18 and MT/MST, but not the superior temporal sulcus, and added more dorsal areas in the cuneus, roughly corresponding to V3/V3a, and ventral areas in the lingual gyrus/collateral sulcus, roughly corresponding to V2/VP. Luminance defined gratings, relative to a static dot field, activated areas 17/18, regions in the dorsal cuneus similar to those activated by motion defined gratings, and a region near the left collateral sulcus, slightly lateral to the motion grating activation. They also activated a region in the right fusiform gyrus that was more weakly activated by the motion grating. These results indicate that adding motion contrast to large moving fields increases activity in areas 17/18 and MT/MST and adds both dorsal and ventral regions that are similar for motion and luminance defined contours.


2014 ◽  
Vol 111 (10) ◽  
pp. 2094-2102 ◽  
Author(s):  
Olivier Morin-Moncet ◽  
Vincent Beaumont ◽  
Louis de Beaumont ◽  
Jean-Francois Lepage ◽  
Hugo Théoret

Recent data suggest that the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene can alter cortical plasticity within the motor cortex of carriers, which exhibits abnormally low rates of cortical reorganization after repetitive motor tasks. To verify whether long-term retention of a motor skill is also modulated by the presence of the polymorphism, 20 participants (10 Val66Val, 10 Val66Met) were tested twice at a 1-wk interval. During each visit, excitability of the motor cortex was measured by transcranial magnetic stimulations (TMS) before and after performance of a procedural motor learning task (serial reaction time task) designed to study sequence-specific learning of the right hand and sequence-specific transfer from the right to the left hand. Behavioral results showed a motor learning effect that persisted for at least a week and task-related increases in corticospinal excitability identical for both sessions and without distinction for genetic group. Sequence-specific transfer of the motor skill from the right hand to the left hand was greater in session 2 than in session 1 only in the Val66Met genetic group. Further analysis revealed that the sequence-specific transfer occurred equally at both sessions in the Val66Val genotype group. In the Val66Met genotype group, sequence-specific transfer did not occur at session 1 but did at session 2. These data suggest a limited impact of Val66Met polymorphism on the learning and retention of a complex motor skill and its associated changes in corticospinal excitability over time, and a possible modulation of the interhemispheric transfer of procedural learning.


1980 ◽  
Vol 51 (1) ◽  
pp. 239-244 ◽  
Author(s):  
Hitoshi Honda

Inhibitory effects of S1 on the RT to S2 in double (visual-visual) stimulation situations were examined using 10 right-handed subjects, especially from the viewpoint of hemispheric input/output coupling. It was shown that the RT of the left hemisphere (right hand) to S2 after the projection of S1 into the right hemisphere was slower than the RTs under other conditions. The results were interpreted as showing an asymmetrical interhemispheric interfering effect in situations of double stimulation.


SLEEP ◽  
2020 ◽  
Vol 43 (8) ◽  
Author(s):  
Tom Bresser ◽  
Jessica C Foster-Dingley ◽  
Rick Wassing ◽  
Jeanne Leerssen ◽  
Jennifer R Ramautar ◽  
...  

Abstract Study Objectives Suggested neural correlates of insomnia disorder have been hard to replicate. Even the most consistent finding, altered white matter microstructure in the anterior limb of the internal capsule, is based on handful studies. The urge for replicable targets to understand the underlying mechanisms of insomnia made us study white matter fractional anisotropy (FA) across three samples of cases and controls. Methods 3-Tesla MRI diffusion tensor imaging data of three independent samples were combined for analysis, resulting in n = 137 participants, of whom 73 were diagnosed with insomnia disorder and 64 were matched controls without sleep complaints. Insomnia severity was measured with the Insomnia Severity Index (ISI). White matter microstructure was assessed with FA. White matter tracts were skeletonized and analyzed using tract-based spatial statistics. We performed a region-of-interest analysis using linear mixed-effect models to evaluate case–control differences in internal capsule FA as well as associations between internal capsule FA and insomnia severity. Results FA in the right limb of the anterior internal capsule was lower in insomnia disorder than in controls (β = −9.76e−3; SE = 4.17e−3, p = .034). In the entire sample, a higher ISI score was associated with a lower FA value of the right internal capsule (β = −8.05e− 4 FA/ISI point, SE = 2.60e− 4, p = .008). Ancillary whole brain voxel-wise analyses showed no significant group difference or association with insomnia severity after correction for multiple comparisons. Conclusions The internal capsule shows small but consistent insomnia-related alterations. The findings support a circuit-based approach to underlying mechanisms since this tract connects many brain areas previously implicated in insomnia.


1992 ◽  
Vol 73 (5) ◽  
pp. 2054-2061 ◽  
Author(s):  
T. J. McMahon ◽  
A. D. Kaye ◽  
J. S. Hood ◽  
R. K. Minkes ◽  
B. D. Nossaman ◽  
...  

The effects of the non-peptide antagonist DuP 753 and its metabolite EXP3174 on responses to angiotensin II were investigated in the pulmonary vascular bed of the intact-chest cat. Under conditions of controlled blood flow and constant left atrial pressure, injections of angiotensin II into the perfused lobar artery caused dose-related increases in lobar arterial pressure. Responses to angiotensin II were reproducible and were not changed by meclofenamate or prazosin, indicating that prostaglandin or norepinephrine release does not mediate or modulate pulmonary vascular responses to the peptide. DuP 753 (1–5 mg/kg iv) decreased responses to angiotensin II in a competitive manner, and the duration of the blockade was related to dose of the antagonist. DuP 753 had no significant effect on responses to U-46619, norepinephrine, serotonin, endothelin-1, vasopressin, or BAY K 8644. EXP3174 also decreased responses to angiotensin II without altering responses to agents that act by a variety of mechanisms. The inhibitory effect of EXP3174 (1 mg/kg iv) was not overcome by angiotensin II in the range of doses studied, and the shift to the right of the dose-response curve was nonparallel, suggesting that the blockade was noncompetitive. The blockade was long in duration, and, when the dose of EXP3174 was decreased to 0.1 mg/kg iv, the blockade was surmounted and the shift to the right of the dose-response relationship was parallel. DuP 753 and EXP3174 had little effect on mean baseline pressures in the cat.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
I. Hay

A case of functional dysacusis was subjected to routine as well as electric response testing. Test results were unreliable and electrical cortical responses to stimuli delivered to the right ear were so poor that the results could not be utilized. A marked difference between the raw EEG tracings was observed when stimuli were switched between left to right ears. This fact was eventually used to determine the hearing threshold level of the right ear.


2013 ◽  
Vol 25 (4pt1) ◽  
pp. 931-941 ◽  
Author(s):  
Jacqueline Bruce ◽  
Philip A. Fisher ◽  
Alice M. Graham ◽  
William E. Moore ◽  
Shannon J. Peake ◽  
...  

AbstractChildren in foster care have often encountered a range of adverse experiences, including neglectful and/or abusive care and multiple caregiver transitions. Prior research findings suggest that such experiences negatively affect inhibitory control and the underlying neural circuitry. In the current study, event-related functional magnetic resonance imaging was employed during a go/no go task that assesses inhibitory control to compare the behavioral performance and brain activation of foster children and nonmaltreated children. The sample included two groups of 9- to 12-year-old children: 11 maltreated foster children and 11 nonmaltreated children living with their biological parents. There were no significant group differences on behavioral performance on the task. In contrast, patterns of brain activation differed by group. The nonmaltreated children demonstrated stronger activation than did the foster children across several regions, including the right anterior cingulate cortex, the middle frontal gyrus, and the right lingual gyrus, during correct no go trials, whereas the foster children displayed stronger activation than the nonmaltreated children in the left inferior parietal lobule and the right superior occipital cortex, including the lingual gyrus and cuneus, during incorrect no go trials. These results provide preliminary evidence that the early adversity experienced by foster children impacts the neural substrates of inhibitory control.


2003 ◽  
Vol 89 (3) ◽  
pp. 1256-1264 ◽  
Author(s):  
Robert Chen ◽  
Derek Yung ◽  
Jie-Yuan Li

Motor cortex stimulation has both excitatory and inhibitory effects on ipsilateral muscles. Excitatory effects can be assessed by ipsilateral motor-evoked potentials (iMEPs). Inhibitory effects include an interruption of ipsilateral voluntary muscle activity known as the silent period (iSP) and a reduction in corticospinal excitability evoked by conditioning stimulation of the contralateral motor cortex (interhemispheric inhibition, IHI). Both iSP and IHI may be mediated by transcallosal pathways. Their relationship to the contralateral corticospinal projection and whether iSP and IHI represent the same phenomenon remain unclear. The neuronal population activated by transcranial magnetic stimulation (TMS) is highly dependent on the direction of the induced current in the brain. We examined the relationship among iMEP, iSP, IHI, and the contralateral corticospinal system by examining the effects of different stimulus intensities and current directions. Surface electromyography (EMG) was recorded from both first dorsal interosseous (FDI) muscles. The iSP in the right FDI muscle was obtained by right motor cortex stimulation during voluntary muscle contraction. IHI was examined by conditioning stimulation of the right motor cortex followed by test stimulation of the left motor cortex at interstimulus intervals (ISIs) of 2–80 ms. The induced current directions tested in the right motor cortex were anterior medial (AM), posterior medial (PM), posterior lateral, and anterior lateral (AL). Contralateral MEPs (cMEPs) had the lowest threshold with the AM direction and the shortest latency with the PM direction. iMEPs were present in 8 of 10 subjects. Both iMEP and IHI did not show significant directional preference. iSP was observed in all subjects with the highest threshold for the AL direction and the longest duration for the AM direction. cMEP, iSP, and IHI all increased with stimulus intensity up to ∼75% stimulator output. Target muscle activation decreased IHI at 8-ms ISI but had little effect on IHI at 40-ms ISI. iSP and IHI at 8-ms ISI did not correlate at any stimulus intensities and current directions tested, and factor analysis showed that they are explained by different factors. However, active IHI at 40-ms ISI was explained by the same factor as iSP. The different directional preference for cMEP compared with iMEP and IHI suggests that these ipsilateral effects are mediated by populations of cortical neurons that are different from those activating the corticospinal neurons. iSP and IHI do not represent the same phenomenon and should be considered complementary measures of ipsilateral inhibition.


Sign in / Sign up

Export Citation Format

Share Document