scholarly journals Preparing for the Worst: Evidence that Older Adults Proactively Downregulate Negative Affect

2019 ◽  
Vol 30 (3) ◽  
pp. 1291-1306 ◽  
Author(s):  
Brittany Corbett ◽  
M Natasha Rajah ◽  
Audrey Duarte

Abstract Previous studies have only investigated age-related differences in emotional processing and encoding in response to, not in anticipation of, emotional stimuli. In the current study, we investigated age-related differences in the impact of emotional anticipation on affective responses and episodic memory for emotional images. Young and older adults were scanned while encoding negative and neutral images preceded by cues that were either valid or invalid predictors of image valence. Participants were asked to rate the emotional intensity of the images and to complete a recognition task. Using multivariate behavioral partial least squares (PLS) analysis, we found that greater anticipatory recruitment of the amygdala, ventromedial prefrontal cortex (vmPFC), and hippocampus in older adults predicted reduced memory for negative than neutral images and the opposite for young adults. Seed PLS analysis further showed that following negative cues older adults, but not young adults, exhibited greater activation of vmPFC, reduced activation of amygdala, and worse memory for negative compared with neutral images. To the best of our knowledge, this is the first study to provide evidence that the “positivity effect” seen in older adults’ memory performance may be related to the spontaneous emotional suppression of negative affect in anticipation of, not just in response to, negative stimuli.

2018 ◽  
Author(s):  
Brittany Corbett ◽  
M. Natasha Rajah ◽  
Audrey Duarte

AbstractAge-related differences in processing emotional stimuli are well established. However, previous studies have only assessed the impact of age on emotional processing and encoding in response to, not in anticipation of, emotional stimuli. In the current study, we investigated age-related differences in the impact of emotional anticipation on affective responses and episodic memory for emotional images. Young and older were scanned while encoding negative and neutral images preceded by cues that were either valid or invalid predictors of image valence. Participants were asked to rate the emotional intensity of the images and to complete an episodic recognition task immediately after scanning. Using multivariate behavioral partial least squares (PLS) analysis, we found that young and older adults recruit the same set of brain regions to differentially support emotional processing during the anticipation of emotional images. Specifically, anticipatory recruitment of the amygdala, ventromedial PFC, and hippocampus in older adults predicts reduced memory for negative than neutral images for older adults and the opposite for young adults. Seed PLS analyses further show inverse coupling between the amygdala and ventromedial PFC activation following negative cues, consistent with the top-down spontaneous suppression of negative affect. To the best of our knowledge, this is the first study to provide evidence that the “positivity effect” seen in older adults’ memory performance is related to the spontaneous suppression of negative affect in anticipation of, not just in response to, negative stimuli.


2020 ◽  
Author(s):  
Patrick Pruitt ◽  
Lingfei Tang ◽  
Jessica Hayes ◽  
Noa Ofen ◽  
Jessica S. Damoiseaux

Negative subsequent memory effects in functional MRI studies of memory formation, have been linked to individual differences in memory performance, yet the effect of age on this association is currently unclear. To provide insight into the brain systems related to memory across the lifespan, we examined functional neuroimaging data acquired during episodic memory formation and behavioral performance from a memory recognition task in a sample of 109 participants, including three developmental age groups (8-12, 13-17, 18-25 year-olds) and one additional group of older adults (55-85 year-olds). Young adults showed the highest memory performance and strongest negative subsequent memory effects, while older adults showed reduced negative subsequent memory effects relative to young adults. Across the sample, negative subsequent memory effects were associated with better memory performance, and there was a significant interaction between negative subsequent memory effects and memory performance by age groups. Posthoc analyses revealed that this effect was driven by a strong association between negative subsequent memory effects and memory performance in adolescents and young adults, but not in children and older adults. These findings suggest that negative subsequent memory effects may differentially support memory performance across a lifespan trajectory characterized by developmental maturation and age-related deterioration.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2008 ◽  
Vol 20 (8) ◽  
pp. 1390-1402 ◽  
Author(s):  
Nancy A. Dennis ◽  
Hongkeun Kim ◽  
Roberto Cabeza

Compared to young adults, older adults show not only a reduction in true memories but also an increase in false memories. We investigated the neural bases of these age effects using functional magnetic resonance imaging and a false memory task that resembles the Deese–Roediger–McDermott (DRM) paradigm. Young and older participants were scanned during a word recognition task that included studied words and new words that were strongly associated with studied words (critical lures). During correct recognition of studied words (true memory), older adults showed weaker activity than young adults in the hippocampus but stronger activity than young adults in the retrosplenial cortex. The hippocampal reduction is consistent with age-related deficits in recollection, whereas the retrosplenial increase suggests compensatory recruitment of alternative recollection-related regions. During incorrect recognition of critical lures (false memory), older adults displayed stronger activity than young adults in the left lateral temporal cortex, a region involved in semantic processing and semantic gist. Taken together, the results suggest that older adults' deficits in true memories reflect a decline in recollection processes mediated by the hippocampus, whereas their increased tendency to have false memories reflects their reliance on semantic gist mediated by the lateral temporal cortex.


2020 ◽  
Author(s):  
Ronan McGarrigle ◽  
Sarah Knight ◽  
Lyndon Rakusen ◽  
Jason Geller ◽  
Sven Mattys

Listening to speech in adverse conditions can be challenging and effortful, especially for older adults. This study examined age-related differences in effortful listening by recording changes in the task-evoked pupil response (TEPR; a physiological marker of listening effort) both at the level of sentence processing and over the entire course of a listening task. A total of 65 (32 young adults; 33 older adults) participants performed a speech recognition task in the presence of a competing talker, while moment-to-moment changes in pupil size were continuously monitored. Participants were also administered the Vanderbilt Fatigue Scale; a questionnaire assessing daily life listening fatigue within four domains (social, cognitive, emotional, physical). Normalized TEPRs were overall larger and more steeply rising and falling around the peak in the older versus the young adult group during sentence processing. Additionally, mean TEPRs over the course of the listening task were more stable in the older versus the young adult group, consistent with a more sustained recruitment of compensatory attentional resources to maintain task performance. No age-related differences were found in terms of total daily life listening fatigue; however, older adults reported higher scores than young adults within the social domain. Overall, this study provides evidence for qualitatively distinct patterns of physiological arousal between young and older adults consistent with age-related upregulation in resource allocation during listening. A more detailed understanding of age-related changes in the subjective and physiological mechanisms that underlie effortful listening will ultimately help to address complex communication needs in aging listeners.


2018 ◽  
Author(s):  
Jiahe Zhang ◽  
Joseph Andreano ◽  
Bradford C. Dickerson ◽  
Alexandra Touroutoglou ◽  
Lisa Feldman Barrett

ABSTRACT“Superagers” are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is preserved in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 elderly adults (66.9 ± 5.5 years old). As in prior studies, superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting state fMRI scan and performed a separate visual-verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared to typical older adults and similar connectivity compared to young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond preserved neuroanatomy. A post-hoc analysis revealed that DMN and SN nodes were more strongly inversely correlated in superagers than in typical older adults but were similarly correlated in superagers and young adults. Stronger between-network inverse correlations also predicted better memory performance in the entire sample of older adults. These results extend our understanding of the neural basis of superaging as a model of successful aging.SIGNIFICANCE STATEMENTMemory capacity generally declines with age, but a unique group of older adults – ‘superagers’ – have memory capacities rivaling those of younger adults, as well as preserved neuroanatomy in an ensemble of regions contained in two core intrinsic brain networks – the default mode and salience networks. In this study, we assessed the strength of intrinsic connectivity within these networks in superagers and typical older adults compared to young adults. We also expanded the behavioral assessment of memory. As predicted, superagers have intrinsic connectivity within the default mode and salience networks that is stronger than typical older adults and similar to that of young adults. Within older adults, preserved intrinsic connectivity within each network was uniquely associated with better memory performance.


2019 ◽  
Author(s):  
Verena R. Sommer ◽  
Yana Fandakova ◽  
Thomas H. Grandy ◽  
Yee Lee Shing ◽  
Markus Werkle-Bergner ◽  
...  

AbstractAge-related memory decline is associated with changes in neural functioning but little is known about how aging affects the quality of information representation in the brain. Whereas a long-standing hypothesis of the aging literature links cognitive impairments to less distinct neural representations in old age, memory studies have shown that high similarity between activity patterns benefits memory performance for the respective stimuli. Here, we addressed this apparent conflict by investigating between-item representational similarity in 50 younger (19–27 years old) and 63 older (63–75 years old) human adults (male and female) who studied scene-word associations using a mnemonic imagery strategy while electroencephalography was recorded. We compared the similarity of spatiotemporal frequency patterns elicited during encoding of items with different subsequent memory fate. Compared to younger adults, older adults’ memory representations were more similar to each other but items that elicited the most similar activity patterns early in the encoding trial were those that were best remembered by older adults. In contrast, young adults’ memory performance benefited from decreased similarity between earlier and later periods in the encoding trials, which might reflect their better success in forming unique memorable mental images of the joint picture–word pair. Our results advance the understanding of the representational properties that give rise to memory quality as well as how these properties change in the course of aging.Significance statementDeclining memory abilities are one of the most evident limitations for humans when growing older. Despite recent advances of our understanding of how the brain represents and stores information in distributed activation patterns, little is known about how the quality of information representation changes during aging and thus affects memory performance. We investigated how the similarity between neural representations relates to subsequent memory quality in younger and older adults. We present novel evidence that the interaction of pattern similarity and memory performance differs between age groups: Older adults benefited from increased similarity during early encoding whereas young adults benefited from decreased similarity between early and later encoding. These results provide insights into the nature of memory and age-related memory deficits.


2019 ◽  
Vol 30 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Jiahe Zhang ◽  
Joseph M Andreano ◽  
Bradford C Dickerson ◽  
Alexandra Touroutoglou ◽  
Lisa Feldman Barrett

Abstract “Superagers” are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is greater in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 older adults (66.9 ± 5.5 years old). Superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and performed a separate visual–verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared with typical older adults and similar connectivity compared with young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond youthful neuroanatomy. These results extend our understanding of the neural basis of superaging as a model of successful aging.


Author(s):  
Stephen Ramanoël ◽  
Marion Durteste ◽  
Marcia Bécu ◽  
Christophe Habas ◽  
Angelo Arleo

AbstractOlder adults exhibit prominent impairments in their capacity to navigate, reorient in unfamiliar environments or update their path when faced with obstacles. This decline in navigational capabilities has traditionally been ascribed to memory impairments and dysexecutive function whereas the impact of visual aging has often been overlooked. The ability to perceive visuo-spatial information such as salient landmarks is essential to navigate in space efficiently. To date, the functional and neurobiological factors underpinning landmark processing in aging remain insufficiently characterized. To address this issue, this study used functional magnetic resonance imaging (fMRI) to investigate the brain activity associated with landmark-based navigation in young and healthy older participants. Twenty-five young adults (μ=25.4 years, σ=4.7; 7F) and twenty-one older adults (μ=73.0 years, σ=3.9; 10F) performed a virtual navigation task in the scanner in which they could only orient using salient landmarks. The underlying whole-brain patterns of activity as well as the functional roles of scene-selective regions, the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC) were analyzed. We found that older adults’ navigational abilities were diminished compared to young adults’ and that the two age groups relied on distinct navigational strategies to solve the task. Better performance during landmark-based navigation was found to be associated with increased neural activity in an extended neural network comprising several cortical and cerebellar regions. Direct comparisons between age groups further revealed that young participants had enhanced anterior temporal activity. In addition, young adults only were found to recruit occipital areas corresponding to the cortical projection of the central visual field during landmark-based navigation. The region-of-interest analysis revealed increased OPA activation in older adult participants. There were no significant between-group differences in PPA and RSC activations. These results hint at the possibility that aging diminishes fine-grained information processing in occipital and temporal regions thus hindering the capacity to use landmarks adequately for navigation. This work helps towards a better comprehension of the neural dynamics subtending landmark-based navigation and it provides new insights on the impact of age-related visuo-spatial processing changes on navigation capabilities.


2020 ◽  
Author(s):  
Helena Gellersen ◽  
Alexandra N. Trelle ◽  
Richard Henson ◽  
Jon Simons

Mnemonic discrimination deficits, or impaired ability to discriminate between similar events in memory, is a hallmark of cognitive ageing, characterised by a stark age-related increase in false recognition. While individual differences in mnemonic discrimination have gained attention due to potential relevance for early detection of Alzheimer’s disease (AD), our understanding of the component processes that contribute to variability in task performance across older adults remains limited. The present investigation explores the roles of representational quality, indexed by perceptual discrimination of objects and scenes with overlapping features, and strategic retrieval ability, indexed by standardized tests of executive function, to mnemonic discrimination in a large cohort of older adults (N=124). We took an individual differences approach and characterised the contributions of these factors to performance under Forced Choice (FC) and Yes/No (YN) recognition memory formats, which place different demands on strategic retrieval. Performance in both test formats declined with age. Accounting for age, individual differences in FC memory performance were best explained by perceptual discrimination score, whereas YN memory performance was best explained by executive functions. A dominance analysis confirmed the relatively greater importance of perceptual discrimination over executive functioning for FC performance, while the opposite was true for YN. These findings highlight parallels between perceptual and mnemonic discrimination in aging, the importance of considering demands on executive functions in the context of mnemonic discrimination, and the relevance of test format for modulating the impact of these factors on performance in older adults.


Sign in / Sign up

Export Citation Format

Share Document