Optimization and Validation of HPTLC Method for Estimation of Ulipristal Acetate in Presence of Its Forced Degradation Products

2020 ◽  
Vol 58 (5) ◽  
pp. 427-432
Author(s):  
Gulzar Kamdar ◽  
Sonal Desai

Abstract Ulipristal acetate (UPA) is used as emergency contraceptive and for uterine fibroids. No validated method has been reported to estimate UPA in presence of its degradation products. Therefore it is mandatory to develop method which can accurately measure it in presence of impurity. A simple and sensitive high-performance thin-layer chromatography (HPTLC) method was developed for the estimation of UPA. Pre-coated silica gel 60F254 TLC plates were as stationary phase and ethyl acetate:toluene:glacial acetic acid (4:7:0.3, v/v/v) was used as mobile phase. Drug was subjected to acid and alkali hydrolysis, oxidation, photo degradation and thermal degradation to study its degradation behavior. UPA eluted with Rf value 0.38 ± 0.02. The method was found to be linear in the concentration range of 400–3,600 ng/band. Limit of detection and limit of quantitation were found to be 72.7786 ng/band and 220.5412 ng/band, respectively. The % recovery of the proposed method was found to be 100.05–100.65%. The proposed method was specific to measure UPA in presence of degradants. The method was found to be accurate, precise, robust and can be useful for routine analysis of formulations containing UPA in presence of its degradation products.

2019 ◽  
Vol 15 (3) ◽  
pp. 273-279
Author(s):  
Shweta G. Rangari ◽  
Nishikant A. Raut ◽  
Pradip W. Dhore

Background:The unstable and/or toxic degradation products may form due to degradation of drug which results into loss of therapeutic activity and lead to life threatening condition. Hence, it is important to establish the stability characteristics of drug in various conditions such as in temperature, light, oxidising agent and susceptibility across a wide range of pH values.Introduction:The aim of the proposed study was to develop simple, sensitive and economic stability indicating high performance thin layer chromatography (HPTLC) method for the quantification of Amoxapine in the presence of degradation products.Methods:Amoxapine and its degraded products were separated on precoated silica gel 60F254 TLC plates by using mobile phase comprising of methanol: toluene: ammonium acetate (6:3:1, v/v/v). The densitometric evaluation was carried out at 320 nm in reflectance/absorbance mode. The degradation products obtained as per ICH guidelines under acidic, basic and oxidative conditions have different Rf values 0.12, 0.26 and 0.6 indicating good resolution from each other and pure drug with Rf: 0.47. Amoxapine was found to be stable under neutral, thermal and photo conditions.Results:The method was validated as per ICH Q2 (R1) guidelines in terms of accuracy, precision, ruggedness, robustness and linearity. A good linear relationship between concentration and response (peak area and peak height) over the range of 80 ng/spot to 720 ng/spot was observed from regression analysis data showing correlation coefficient 0.991 and 0.994 for area and height, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for area were found to be 1.176 ng/mL and 3.565 ng/mL, whereas for height, 50.063 ng/mL and 151.707 ng/mL respectively.Conclusion:The statistical analysis confirmed the accuracy, precision and selectivity of the proposed method which can be effectively used for the analysis of amoxapine in the presence of degradation products.


2008 ◽  
Vol 91 (4) ◽  
pp. 709-719 ◽  
Author(s):  
Gulshan Bansal ◽  
Manjeet Singh ◽  
Kaur Chand Jindal ◽  
Saranjit Singh

Abstract A forced degradation study on glibenclamide was performed under conditions of hydrolysis, oxidation, dry heat, and photolysis and a high-performance column liquid chromatographic-ultraviolet (HPLC-UV) method was developed to study degradation behavior of the drug under the forced conditions. The degradation products formed under different forced conditions were characterized through isolation and subsequent infrared/nuclear magnetic resonance/mass spectral analyses, or through HPLC/mass spectrometric (HPLC/MS) studies. The drug degraded in 0.1 M HCl and water at 85C toamajor degradation product, 5-chloro-2-methoxy-N-2-(4-sulfamoylphenyl)ethyl]benzamide (III), and to a minor product, 1-cyclohexyl-3-[[4-(2-aminoethyl)-phenyl]sulfonyl]urea (IV). Upon prolonged heating in the acid, the minor product IV disappeared, resulting in formation of 5-chloro-2-methoxy-benzoic acid (II) and an unidentified product (I). Heating of the drug in 0.1 M NaOH at 85C yielded II and IV as the major products and I and III as the minor products. The drug and the degradation products formed under different conditions were optimally resolved on a C18 column using ammonium acetate buffer (0.025 M, pH 3.5)acetonitrile (45 + 55) mobile phase at a flow rate of 0.6 mL/min, with detection at 230 nm. The method was validated for linearity, precision, accuracy, and specificity. Limit of detection (LOD) and limit of quantitation (LOQ) values were also determined. The method could be successfully applied for simultaneous quantification of glibenclamide and the major product, III. The response of the method was linear in a narrow [0.410 g/mL, correlation coefficient (r2 = 0.9982] and a wide (0.4500 g/mL, r2 = 0.9993) concentration range for glibenclamide, and in the concentration range of 0.02550 g/mL (r2 = 0.9998) for III. The method proved to be precise and accurate for both glibenclamide and III. It was specific for the drug and also selective for each degradation product, and LOQ values for the drug were 0.1 and 0.4 g/mL, whereas those for III were 0.010 and 0.025 g/mL, respectively.


2021 ◽  
Vol 11 (3) ◽  
pp. 219-223
Author(s):  
Vidhya K. Bhusari ◽  
Sunil R. Dhaneshwar

Objective: A simple, sensitive, selective, precise repeatable and stability-indicating high-performance thin layer chromatographic method was developed and validated for Eszopiclone in bulk drug and in formulation. Method: Silica gel 60 F-254, TLC precoated aluminium plates was used as the stationary phase for analyzing Eszopiclone and its degradation products, using mobile phase consisting toluene: ethyl acetate: methanol (6: 4: 2 v/v/v). Result: This mobile phase gave compact spots for Eszopiclone with Rf value of 0.52 ± 0.02. Eszopiclone was exposed to hydrolysis, oxidation, neutral and photolytic conditions for conducting stress degradation study. The peak of Eszopiclone and the degradation product was well resolved from each other with a significantly different Rf value. Densitometric estimation of Eszopiclone was performed at 304nm. A good linear plot was obtained in the concentration range of 150-300ng/spot. The method was validated for precision, accuracy (recovery) and robustness study. The limit of detection (LOD) and limit of quantitation (LOQ) was found to be 130ng/spot and 150ng/spot, respectively. Conclusion: The developed HPTLC method can separate Eszopiclone from its degradation products, hence stability studies can be performed using this method.


Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 


Author(s):  
Sagar B. Wankhede ◽  
Deepak S. Khobragade ◽  
Sukeshini B. Lote ◽  
S. Patil

A combined dose tablet formulation containing Amlodipine besylate and Lisinopril is used for the treatment of essential hypertension. The present study reports development and validation of stability indicating high performance thin layer chromatographic method for simultaneous estimation of these drugs in combined dose tablet formulation. The two drugs were satisfactorily resolved on aluminum plates precoated with silica gel 60F254 using n-butanol : methanol: ammonia (4:4:1 v/v/v) as mobile phase. The Rf value for lisinopril and amlodipine besylate were 0.27±0.02 and 0.62±0.02, respectively. Densitometric evaluation of the separated bands was performed at 215nm. The calibration curves for lisinopril and amlodipine besylate were found to be linear in the concentration range of 1000-6000ng/band. The method was validated as per ICH guidelines for accuracy, precision, robustness, specificity, limit of detection and limit of quantitation. Statistical analysis proves that the method is suitable for simultaneous analysis of Lisinopril and Amlodipine besylate in pharmaceutical formulation without any interference from the excipients/degradant. The developed method offers several advantages such as sensitive, rapid, cost effective and less time consuming as compared to the reported methods. As the method could effectively separate the drugs from its degradation products, it can be employed as a stability indicating method.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Nayan G. Patel ◽  
Kalpana G. Patel ◽  
Kirti V. Patel ◽  
Tejal R. Gandhi

A simple, rapid, and precise high-performance thin-layer chromatographic method was developed for quantitative estimation of luteolin and apigenin inPremna mucronataRoxb., family Verbenaceae. Separation was performed on silica gel 60 F254HPTLC plates using toluene : ethyl acetate : formic acid (6 : 4 : 0.3) as mobile phase for elution of markers from extract. The determination was carried out in fluorescence mode using densitometric absorbance-reflection mode at 366 nm for both luteolin and apigenin. The methanolic extract ofPremna mucronatawas found to contain 10.2 mg/g % luteolin and 0.165 mg/g % of apigenin. The method was validated in terms of linearity, LOD and LOQ, accuracy, precision, and specificity. The calibration curve was found to be linear between 200 and 1000 ng/band for luteolin and 50 and 250 ng/band for apigenin. For luteolin and apigenin, the limit of detection was found to be 42.6 ng/band and 7.97 ng/band while the limit of quantitation was found to be 129.08 ng/band and 24.155 ng/band, respectively. This developed validated method is capable of quantifying and resolving luteolin and apigenin and can be applicable for routine analysis of extract and plant as a whole.


2020 ◽  
Vol 11 (02) ◽  
pp. 219-223
Author(s):  
Ansari Yaasir Ahmed ◽  
Qazi Shoeb ◽  
Umme Rumana ◽  
Patel Afroza ◽  
Pathan Vahid Tajkhan ◽  
...  

The new stability-indicating high performance liquid chromatography (HPLC) method has been developed and validated with different parameters for atenolol (ATE) and nifedipine (NIFE) in the combined dosage form. The chromatographic conditions were optimized using a mobile phase of MeOH:OPA (70:30) with a flow rate of 0.7 mL/min. Column (C18) of 4.6 × 250 mm dimension was used as a stationary phase; the particle size capacity of the column was 5 μm. The detection was carried out at 233 nm. The method was validated according to ICH guidelines for linearity, precision, repeatability, the limit of detection (LoD), and limit of quantitation (LoQ). The response was found to be linear in the concentration range of 20 to 100 mcg/mL for ATE and 1 to 5 mcg/mL for NIFE. The developed method shows the minimum quantity of drugs to be identified (LoD) and minimum drug to be quantified (LoQ). The LoD and LoQ were found to be 0.1415 and 0.4289, respectively, for ATE, and 0.1834 and 0.5558, respectively, for NIFE. The method was linear, simple, precise, and accurate and, therefore, suitable for routine analysis of drugs in tablet form. The forced degradation studies were also done through the exposure of analyte solution to four different stress conditions.


2013 ◽  
Vol 781-784 ◽  
pp. 68-71 ◽  
Author(s):  
Fang Tan

A reversed phase HPLC method was developed and validated for analysis of roflumilast, its related substances and degradation products, using Ecosil C18 column (250×4.6 mm, 5 μm) with a flow rate of 1.0 ml/min and detection wavelength of 215nm. The mobile phase was a mixture of acetonitrile and 0.005mol·L-1ammonium dihydrogen phosphate buffer pH 3.5 in the ratio of 48:52 (v/v). The samples were analyzed using 20 μl injection volume and the column temperature was maintained at 30°C. The limit of detection and limit of quantitation were found to be 2.6 ng/ml and 8ng/ml, respectively. The stability-indicating capability of method was established by forced degradation studies and method demonstrated successful separation of drug, its related substances and degradation products. The method is sensitive, specific, accurate, precise and stability indicating for the quantitation of drug, its related substances and other degradation compounds.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Soad S. Abd El-Hay ◽  
Mostafa S. Mohram

A simple and robust high-performance liquid chromatography (HPLC) method is described for the assay for levetiracetam (LTC), methyl paraben (MHB), and propyl paraben (PHB) either in their pure form or in commercial Levepsy® syrup. The method is selective and stability indicating and all chromatographic conditions were studied to obtain adequate separation of LTC, MHB, and PHB from their degradation products and from excipients. The HPLC separation was carried out on a RP C18 Hypersil BDS analytical column (150 mm × 4.6 mm ID) using gradient elution system. The mobile phase flow rate was 1.5 mLmin−1 and the column temperature was kept at 40°C. Complete separation of the studied components was obtained within a cycle time of 8 min. LTC, MHB, and PHB were eluted at 1.56, 5.86, and 7.85 min, respectively. Detection was carried out at 240 nm using a dual wavelength detector. The method has been validated for linearity, accuracy, precision, specificity, limit of detection, limit of quantitation, robustness, and ruggedness. The proposed method was successfully applied for the determination of LTC in the presence of parabens in Levepsy syrup.


Author(s):  
Shaik Shakirbasha ◽  
Sravanthi P

  Objective: To develop and validate a simple, selective, precise, and accurate method for the estimation of dapagliflozin using reversed-phase high-performance liquid chromatography (RP-HPLC) technique in bulk and tablet formulation.Methods: The proposed method utilizes chromatographic conditions hypersil BDS (250 mm × 4.6 mm, 5 μ), mobile phase was buffer:acetonitrile (60:40) ratio, flow rate was maintained 1 ml/minute, column temperature was set at 30°C, detection wave length was 245 nm, and diluent was mobile phase.Results: By injecting 5 times of the standard solution system suitability parameters were studied, and results were found well under the acceptance criteria. The linearity study was performed by taking 25-150% levels, and the R2 value was found to be 0.999, precision was found to be 0.5 for repeatability and 0.31 for intermediate precision. The % recovery was found to be 99.89%. Limit of detection and limit of quantitation were found to be 0.60 μg/ml and 1.81 μg/ml, respectively. The % purity was found to be 99.71%. Degradation study on dapagliflozin was performed and concluded that the purity threshold was more than purity angle and within the acceptable range.Conclusion: The developed RP-HPLC method for dapagliflozin was found to be simple, precise, accurate, reproducible, and cost effective. Statistical analysis of the developed method conforms that the proposed method is an appropriate and it can be useful for the routine analysis. This method gives the basic idea to the researcher who is working in area such as product development and finish product testing.


Sign in / Sign up

Export Citation Format

Share Document