The Integrase Inhibitors Dolutegravir and Raltegravir Exert Proadipogenic and Profibrotic Effects and Induce Insulin Resistance in Human/Simian Adipose Tissue and Human Adipocytes

2020 ◽  
Vol 71 (10) ◽  
pp. e549-e560 ◽  
Author(s):  
Jennifer Gorwood ◽  
Christine Bourgeois ◽  
Valérie Pourcher ◽  
Guillaume Pourcher ◽  
Frédéric Charlotte ◽  
...  

Abstract Background Although some integrase strand transfer inhibitors (INSTIs) promote peripheral and central adipose tissue/weight gain in people with human immunodeficiency virus (PHIV), the underlying mechanism has not been identified. Here, we used human and simian models to assess the impact of INSTIs on adipose tissue phenotype and function. Methods Adipocyte size and fibrosis were determined in biopsies of subcutaneous and visceral adipose tissue (SCAT and VAT, respectively) from 14 noninfected macaques and 19 PHIV treated or not treated with an INSTI. Fibrosis, adipogenesis, oxidative stress, mitochondrial function, and insulin sensitivity were assessed in human proliferating or adipocyte-differentiated adipose stem cells after long-term exposure to dolutegravir or raltegravir. Results We observed elevated fibrosis, adipocyte size, and adipogenic marker expression in SCAT and VAT from INSTI-treated noninfected macaques. Adiponectin expression was low in SCAT. Accordingly, SCAT and VAT samples from INSTI-exposed patients displayed higher levels of fibrosis than those from nonexposed patients. In vitro, dolutegravir and, to a lesser extent, raltegravir were associated with greater extracellular matrix production and lipid accumulation in adipose stem cells and/or adipocytes as observed in vivo. Despite the INSTIs’ proadipogenic and prolipogenic effects, these drugs promoted oxidative stress, mitochondrial dysfunction, and insulin resistance. Conclusions Dolutegravir and raltegravir can directly impact adipocytes and adipose tissue. These INSTIs induced adipogenesis, lipogenesis, oxidative stress, fibrosis, and insulin resistance. The present study is the first to shed light on the fat modifications observed in INSTI-treated PHIV.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 854 ◽  
Author(s):  
Jennifer Gorwood ◽  
Tina Ejlalmanesh ◽  
Christine Bourgeois ◽  
Matthieu Mantecon ◽  
Cindy Rose ◽  
...  

Background: Aging is characterized by adipose tissue senescence, inflammation, and fibrosis, with trunk fat accumulation. Aging HIV-infected patients have a higher risk of trunk fat accumulation than uninfected individuals—suggesting that viral infection has a role in adipose tissue aging. We previously demonstrated that HIV/SIV infection and the Tat and Nef viral proteins were responsible for adipose tissue fibrosis and impaired adipogenesis. We hypothesized that SIV/HIV infection and viral proteins could induce adipose tissue senescence and thus lead to adipocyte dysfunctions. Methods: Features of tissue senescence were evaluated in subcutaneous and visceral adipose tissues of SIV-infected macaques and in human adipose stem cells (ASCs) exposed to Tat or Nef for up to 30 days. Results: p16 expression and p53 activation were higher in adipose tissue of SIV-infected macaques than in control macaques, indicating adipose tissue senescence. Tat and Nef induced higher senescence in ASCs, characterized by higher levels of senescence-associated beta-galactosidase activity, p16 expression, and p53 activation vs. control cells. Treatment with Tat and Nef also induced oxidative stress and mitochondrial dysfunction. Prevention of oxidative stress (using N-acetyl-cysteine) reduced senescence in ASCs. Adipocytes having differentiated from Nef-treated ASCs displayed alterations in adipogenesis with lower levels of triglyceride accumulation and adipocyte marker expression and secretion, and insulin resistance. Conclusion: HIV/SIV promotes adipose tissue senescence, which in turn may alter adipocyte function and contribute to insulin resistance.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Sung-Chan Shin ◽  
Hyung-Sik Kim ◽  
Yoojin Seo ◽  
Cho Hee Kim ◽  
Ji Min Kim ◽  
...  

The therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) has been proved in several in vitro and in vivo models based on their antioxidative capacity. Oxidative stress is involved in the formation of vocal fold scars and the aging of vocal folds. However, few studies have examined the direct correlation between oxidative damage and reconstitution of extracellular matrix (ECM) in the vocal fold fibrosis. We, therefore, sought to investigate the impact of oxidative stress on cell survival and ECM production of human vocal fibroblasts (hVFFs) and the protective effects elicited by TMSCs against oxidative damages in hVFFs. hVFFs were exposed to different concentrations of tert-butyl hydroperoxide in the presence or absence of TMSCs. Cell viability and reactive oxygen species (ROS) production were assessed to examine the progression of oxidative stress in vitro. In addition, expression patterns of ECM-associated factors including various collagens were examined by real-time PCR and immunocytochemical analysis. We found that both cell viability and proliferation capacity of hVFFs were decreased following the exposure to tBHP in a dose-dependent manner. Furthermore, tBHP treatment induced the generation of ROS and reactive aldehydes, while it decreased endogenous activity of antioxidant enzymes in hVFF. Importantly, TMSCs could rescue these oxidative stress-associated damages of hVFFs. TMSCs also downregulated tBHP-mediated production of proinflammatory cytokines in hVFFs. In addition, coculture with TMSC could restore the endogenous matrix metalloproteinase (MMP) activity of hVFFs upon tBHP treatment and, in turn, reduce the oxidative stress-induced ECM accumulation in hVFFs. We have, therefore, shown that the changes in hVFF proliferative capacity and ECM gene expression induced by oxidative stress are consistent with in vivo phenotypes observed in aging vocal folds and vocal fold scarring and that TMSCs may function to reduce oxidative stress in aging vocal folds.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 80
Author(s):  
Simona Terzo ◽  
Alessandro Attanzio ◽  
Pasquale Calvi ◽  
Flavia Mulè ◽  
Luisa Tesoriere ◽  
...  

Obesity-related dysmetabolic conditions are amongst the most common causes of death globally. Indicaxanthin, a bioavailable betalain pigment from Opuntia ficus-indica fruit, has been demonstrated to modulate redox-dependent signalling pathways, exerting significant anti-oxidative and anti-inflammatory effects in vitro and in vivo. In light of the strict interconnections between inflammation, oxidative stress and insulin resistance (IR), a nutritionally relevant dose of indicaxanthin has been evaluated in a high-fat diet (HFD) model of obesity-related IR. To this end, biochemical and histological analysis, oxidative stress and inflammation evaluations in liver and adipose tissue were carried out. Our results showed that indicaxanthin treatment significantly reduced body weight, daily food intake and visceral fat mass. Moreover, indicaxanthin administration induced remarkable, beneficial effects on HFD-induced glucose dysmetabolism, reducing fasting glycaemia and insulinaemia, improving glucose and insulin tolerance and restoring the HOMA index to physiological values. These effects were associated with a reduction in hepatic and adipose tissue oxidative stress and inflammation. A decrease in RONS, malondialdehyde and NO levels, in TNF-α, CCL-2 and F4-80 gene expression, in p65, p-JNK, COX-2 and i-NOS protein levels, in crown-like structures and hepatic inflammatory foci was, indeed, observed. The current findings encourage further clinical studies to confirm the effectiveness of indicaxanthin to prevent and treat obesity-related dysmetabolic conditions.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Sunhye Shin ◽  
Asma S. El-Sabbagh ◽  
Brandon E. Lukas ◽  
Skylar J. Tanneberger ◽  
Yuwei Jiang

Abstract Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.


2000 ◽  
Vol 349 (2) ◽  
pp. 579-586 ◽  
Author(s):  
Mogher KHAMAISI ◽  
Oren KAVEL ◽  
Moti ROSENSTOCK ◽  
Michal PORAT ◽  
Michal YULI ◽  
...  

Decreased cellular GSH content is a common finding in experimental and human diabetes, in which increased oxidative stress appears to occur. Oxidative stress has been suggested to play a causative role in the development of impaired insulin action on adipose tissue and skeletal muscle. In this study we undertook to investigate the potential of GSH depletion to induce insulin resistance, by utilizing the GSH synthesis inhibitor, L-buthionine-[S,R]-sulfoximine (BSO). GSH depletion (20-80% in various tissues), was achieved in vivo by treating rats for 20 days with BSO, and in vitro (80%) by treating 3T3-L1 adipocytes with BSO for 18 h. No demonstrable change in the GSH/GSSG ratio was observed following BSO treatment. GSH depletion was progressively associated with abnormal glucose tolerance test, which could not be attributed to impaired insulin secretion. Skeletal muscle insulin responsiveness was unaffected by GSH depletion, based on normal glucose response to exogenous insulin, 2-deoxyglucose uptake measurements in isolated soleus muscle, and on normal skeletal muscle expression of GLUT4 protein. Adipocyte insulin responsiveness in vitro was assessed in 3T3-L1 adipocytes, which displayed decreased insulin-stimulated tyrosine phosphorylation of insulin-receptor-substrate proteins and of the insulin receptor, but exaggerated protein kinase B phosphorylation. However, insulin-stimulated glucose uptake was unaffected by GSH depletion. In accordance, normal adipose tissue insulin sensitivity was observed in BSO-treated rats in vivo, as demonstrated by normal inhibition of circulating non-esterified fatty acid levels by endogenous insulin secretion. In conclusion, GSH depletion by BSO results in impaired glucose tolerance, but preserved adipocyte and skeletal muscle insulin responsiveness. This suggests that alternative oxidation-borne factors mediate the induction of peripheral insulin resistance by oxidative stress.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1210
Author(s):  
Amy K. Hauck ◽  
Tong Zhou ◽  
Ambuj Upadhyay ◽  
Yuxiang Sun ◽  
Michael B. O’Connor ◽  
...  

Oxidative stress is a hallmark of metabolic disease, though the mechanisms that define this link are not fully understood. Irreversible modification of proteins by reactive lipid aldehydes (protein carbonylation) is a major consequence of oxidative stress in adipose tissue and the substrates and specificity of this modification are largely unexplored. Here we show that histones are avidly modified by 4-hydroxynonenal (4-HNE) in vitro and in vivo. Carbonylation of histones by 4-HNE increased with age in male flies and visceral fat depots of mice and was potentiated in genetic (ob/ob) and high-fat feeding models of obesity. Proteomic evaluation of in vitro 4-HNE- modified histones led to the identification of both Michael and Schiff base adducts. In contrast, mapping of sites in vivo from obese mice exclusively revealed Michael adducts. In total, we identified 11 sites of 4-hydroxy hexenal (4-HHE) and 10 sites of 4-HNE histone modification in visceral adipose tissue. In summary, these results characterize adipose histone carbonylation as a redox-linked epigenomic mark associated with metabolic disease and aging.


Gut ◽  
2008 ◽  
Vol 58 (4) ◽  
pp. 570-581 ◽  
Author(s):  
H Aurich ◽  
M Sgodda ◽  
P Kaltwasser ◽  
M Vetter ◽  
A Weise ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1378
Author(s):  
Peyton Gibler ◽  
Jeffrey Gimble ◽  
Katie Hamel ◽  
Emma Rogers ◽  
Michael Henderson ◽  
...  

Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3216
Author(s):  
Maryvonne Ardourel ◽  
Chloé Felgerolle ◽  
Arnaud Pâris ◽  
Niyazi Acar ◽  
Khaoula Ramchani Ben Othman ◽  
...  

To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.


Sign in / Sign up

Export Citation Format

Share Document