"U" Protein and Migration Ratios in Paper Electrophoresis

1957 ◽  
Vol 3 (5) ◽  
pp. 599-608 ◽  
Author(s):  
Joel R Stern ◽  
Roland F Mais ◽  
Joseph D Boggs

Abstract Paper electrophoresis of serum from children with liver and kidney disease has led to recognition of a protein which migrates between the 2 and globulins. This protein has been observed by other workers, but because of confusion in nomenclature, a new designation, "U" protein, has been employed. The use of migration ratios in locating peaks of the 2 "U" protein, and globulin when these components resolve poorly has been discussed. Characterization of "U" protein by employing the periodic acid-reduced fuchsin test for carbohydrate-protein complexes and Sudan black B for lipoprotein showed: (1)"U" protein varies in its content of protein-carbohydrate complex, and (2)"U" protein may be lipo-protein. Evidence based on benzidine tests and intentional hemolysis indicated that "U" protein was not an artifact resulting from accidental hemolysis, but a protein which is found in serum under certain physiological conditions.

2015 ◽  
Vol 112 (39) ◽  
pp. 12093-12098 ◽  
Author(s):  
Chiao-Lin Chen ◽  
Yanhui Hu ◽  
Namrata D. Udeshi ◽  
Thomas Y. Lau ◽  
Frederik Wirtz-Peitz ◽  
...  

Characterization of the proteome of organelles and subcellular domains is essential for understanding cellular organization and identifying protein complexes as well as networks of protein interactions. We established a proteomic mapping platform in live Drosophila tissues using an engineered ascorbate peroxidase (APEX). Upon activation, the APEX enzyme catalyzes the biotinylation of neighboring endogenous proteins that can then be isolated and identified by mass spectrometry. We demonstrate that APEX labeling functions effectively in multiple fly tissues for different subcellular compartments and maps the mitochondrial matrix proteome of Drosophila muscle to demonstrate the power of APEX for characterizing subcellular proteomes in live cells. Further, we generate “MitoMax,” a database that provides an inventory of Drosophila mitochondrial proteins with subcompartmental annotation. Altogether, APEX labeling in live Drosophila tissues provides an opportunity to characterize the organelle proteome of specific cell types in different physiological conditions.


Author(s):  
A. W. Sedar ◽  
G. H. Bresnick

After experimetnal damage to the retina with a variety of procedures Müller cell hypertrophy and migration occurs. According to Kuwabara and others the reactive process in these injuries is evidenced by a marked increase in amount of glycogen in the Müller cells. These cells were considered originally supporting elements with fiber processes extending throughout the retina from inner limiting membrane to external limiting membrane, but are known now to have high lactic acid dehydrogenase activity and the ability to synthesize glycogen. Since the periodic acid-chromic acid-silver methenamine technique was shown to demonstrate glycogen at the electron microscope level, it was selected to react with glycogen in the fine processes of the Müller cell that ramify among the neural elements in various layers of the retina and demarcate these cells cytologically. The Rhesus monkey was chosen as an example of a well vascularized retina and the rabbit as an example of a avascular retina to explore the possibilities of the technique.


2014 ◽  
Vol 14 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Yassel Gomez ◽  
Sebastien Gallien ◽  
Vivian Huerta ◽  
Jan Oostrum ◽  
Bruno Domon ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Qun Chen ◽  
Shweta Chhajed ◽  
Tong Zhang ◽  
Joseph M. Collins ◽  
Qiuying Pang ◽  
...  

AbstractDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.


The Analyst ◽  
2021 ◽  
Author(s):  
Pengfei Zhang ◽  
Aniruddha Kaushik ◽  
Kathleen E Mach ◽  
Kuangwen Hsieh ◽  
Joseph C. Liao ◽  
...  

The development of accelerated methods for pathogen identification (ID) and antimicrobial susceptibility testing (AST) for infectious diseases is necessary to facilitate evidence-based antibiotic therapy and reduce clinical overreliance on broad-spectrum...


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Liming Gao ◽  
Ya Di ◽  
Jiandong Wu ◽  
Ming Shi ◽  
Fulu Zheng

Cervical cancer is a serious health hazard for women’s reproductive system cancer; the method of treatment for cervical cancer is still in surgery, chemotherapy, and radiotherapy as the basic means, but with many complications. The effects of natural medicines for cervical cancer are increasingly becoming the focus of people’s attentions. By studying the polysaccharide of cervical cancer in mice, we found that shark cartilage polysaccharide can increase the serum levels of T-SOD and GSH and decrease MDA level significantly in the tumor mice. The distribution of the drug in the tissue was determined by HPLC method; the drug can be drawn in the liver and kidney the highest, followed by the spleen, lung, and brain levels being the lowest. Polysaccharide can inhibit tumor growth in the mice which may be connected with the enhanced immunity and the antioxidant capacity.


Sign in / Sign up

Export Citation Format

Share Document