scholarly journals Heat stress during development makes antlion larvae more responsive to vibrational cues

2021 ◽  
Author(s):  
Krzysztof Miler ◽  
Marcin Czarnoleski

Abstract We investigated the effects of heat stress on the responsiveness to vibrational cues, our measure of perceptual ability, in Myrmeleon bore antlion larvae (Neuroptera: Myrmeleontidae). We reared these trap-building predatory larvae under two heat stress regimes (mild, 30 °C, and harsh, 36 °C), and after they progressed from one instar stage to another, we tested their perceptual ability in common unchallenging conditions. We hypothesized that exposure to the harsh heat stress regime would impose costs resulting in handicapped vibration responsiveness. We found that the harsh heat stress regime generated more stressful conditions for the larvae, as evidenced by increased mortality and postponed molting, and the loss of body mass among larger larvae. Furthermore, among the individuals who remained alive, those originating from the harsh heat stress regime were characterized by higher vibration responsiveness. Our results suggest two not mutually exclusive scenarios. Costly heat stress conditions can sieve out individuals characterized by poor perceptual ability, or surviving individuals can attempt to hunt more efficiently to compensate for the physiological imbalance caused by heat stress. Both of these mechanisms fit into the ongoing debate over how adaptation and plasticity contribute to shaping insect communities exposed to heat stress.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 347
Author(s):  
Samikshya Bhattarai ◽  
Joshua Harvey ◽  
Desire Djidonou ◽  
Daniel Leskovar

Texas tomato production is vulnerable to extreme heat in the spring-summer cropping period, which is exacerbated by the lack of superior genetic materials that can perform well in such environments. There is a dire need for selecting superior varieties that can adapt to warm environments and exhibit high yield stability under heat stress conditions. This research aimed at identifying heat-tolerant varieties under heat-stress conditions in controlled and open-field environments and was carried out in three stages. For the first experiment, 43 varieties were screened based on yield responses in natural open-field environment. From those, 18 varieties were chosen and exposed to control (greenhouse: 26/20 °C) and constant heat-stress (growth-chamber: 34/24 °C) conditions for three months. Measurements were done for chlorophyll fluorescence, chlorophyll content (SPAD), plant height, stem diameter and heat injury index (HII). The last experiment was conducted in an open field with a pool of varieties selected from the first and second experiments. Leaf gas exchange, leaf temperature, chlorophyll fluorescence, SPAD value, electrolyte leakage, heat injury index and yield were assessed. From the combined studies, we concluded that heat-tolerant genotypes selected by using chlorophyll fluorescence and HII in controlled heat-stress conditions also exhibited heat-tolerance in open-field environments. Electrolyte leakage and HII best distinguished tomato varieties in open-field environments as plants with low electrolyte leakage and HII had higher total yield. 'Heat Master,' 'New Girl,' 'HM-1823,' 'Rally,' 'Valley Girl,' 'Celebrity,' and 'Tribeca' were identified as high heat-tolerant varieties. Through trait correlation analysis we provide a better understanding of which traits could be useful for screening and breeding other heat-tolerant tomato varieties.


1988 ◽  
Vol 67 (8) ◽  
pp. 1183-1187 ◽  
Author(s):  
H.L. STILBORN ◽  
G.C. HARRIS ◽  
W.G. BOTTJE ◽  
P.W. WALDROUP

2014 ◽  
Vol 92 (3) ◽  
pp. 1184-1192 ◽  
Author(s):  
J. L. Dávila-Ramírez ◽  
U. Macías-Cruz ◽  
N. G. Torrentera-Olivera ◽  
H. González-Ríos ◽  
S. A. Soto-Navarro ◽  
...  

2014 ◽  
Vol 48 (5) ◽  
pp. 279-284 ◽  
Author(s):  
L. O. Sakhno ◽  
M. S. Slyvets ◽  
M. V. Kuchuk

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1000
Author(s):  
Maryke Labuschagne ◽  
Carlos Guzmán ◽  
Keneuoe Phakela ◽  
Barend Wentzel ◽  
Angeline van Biljon

Drought and temperature stress can cause considerable gluten protein accumulation changes during grain-filling, resulting in variations in wheat quality. The contribution of functional polymeric components of flour to its overall functionality and quality can be measured using solvent retention capacity (SRC). The aim of this study was to determine the effect of moderate and severe drought and heat stress on SRC and swelling index of glutenin (SIG) in six durum wheat cultivars with the same glutenin subunit composition and its relation with gluten protein fractions from size exclusion high performance liquid chromatography. Distilled water, sodium carbonate and sucrose SRC reacted similarly to stress conditions, with moderate heat causing the lowest values. Lactic acid SRC and SIG reacted similarly, where severe heat stress highly significantly increased the values. SIG was significantly correlated with sodium dodecyl sulphate sedimentation (SDSS) and flour protein content (FPC) under all conditions. Lactic acid SRC was highly correlated with FPC under optimal and moderate heat stress and with SDSS under moderate drought and severe heat. SIG was negatively correlated with low molecular weight glutenins under optimal and drought conditions, and combined for all treatments. The relationship between SRC and gluten proteins was inconsistent under different stress conditions.


2016 ◽  
Vol 79 (10) ◽  
pp. 1673-1679 ◽  
Author(s):  
ACHYUT ADHIKARI ◽  
ANDY BARY ◽  
CRAIG COGGER ◽  
CALEB JAMES ◽  
GÜLHAN ÜNLÜ ◽  
...  

ABSTRACT Pathogens exposed to agricultural production environments are subject to multiple stresses that may alter their survival under subsequent stress conditions. The objective of this study was to examine heat and starvation stress response of Escherichia coli O157:H7 strains isolated from agricultural matrices. Seven E. coli O157:H7 isolates from different agricultural matrices—soil, compost, irrigation water, and sheep manure—were selected, and two ATCC strains were used as controls. The E. coli O157:H7 isolates were exposed to heat stress (56°C in 0.1% peptone water for up to 1 h) and starvation (in phosphate-buffered saline at 37°C for 15 days), and their survival was examined. GInaFiT freeware tool was used to perform regression analyses of the surviving populations. The Weibull model was identified as the most appropriate model for response of the isolates to heat stress, whereas the biphasic survival curves during starvation were fitted using the double Weibull model, indicating the adaptation to starvation or a resistant subpopulation. The inactivation time during heating to achieve the first decimal reduction time (δ) calculated with the Weibull parameters was the highest (45 min) for a compost isolate (Comp60A) and the lowest (28 min) for ATCC strain 43895. Two of the nine isolates (ATCC 43895 and a manure isolate) had β < 1, indicating that surviving populations adapted to heat stress, and six strains demonstrated downward concavity (β > 1), indicating decreasing heat resistance over time. The ATCC strains displayed the longest δ2 (>1,250 h) in response to starvation stress, compared with from 328 to 812 h for the environmental strains. The considerable variation in inactivation kinetics of E. coli O157:H7 highlights the importance of evaluating response to stress conditions among individual strains of a specific pathogen. Environmental isolates did not exhibit more robust response to stress conditions in this study compared with ATCC strains.


Sign in / Sign up

Export Citation Format

Share Document