Sodium Selenium Enhances the Antioxidative Activities and Immune Functions of Apis mellifera (Hymenoptera: Apidae) and Increases the Selenium Content in Royal Jelly

2019 ◽  
Vol 49 (1) ◽  
pp. 169-177
Author(s):  
Xuepeng Chi ◽  
Wei Wei ◽  
Weixing Zhang ◽  
Zhenguo Liu ◽  
Hongfang Wang ◽  
...  

Abstract Selenium (Se), as an essential micronutrient, has been demonstrated to play an important role in life activities. In this study, we studied the effects of sucrose solutions containing sodium selenite on Apis mellifera (L.). We obtained the appropriate level of sodium selenite for A. mellifera by determining the life span by lab rearing, and then, we studied the effects of sodium selenite on antioxidant activity, phenol oxidase activity, development of the hypopharyngeal gland, Se content of body tissues and royal jelly (RJ), and related gene transcription levels for a bee colony. The results of lab rearing showed that a concentration of 0.57 mg/liter sodium selenium could extend life. After feeding the colony sodium selenium at concentrations of 0.3 mg/liter and 0.6 mg/liter, the results showed that 0.6 mg/liter sodium selenite could enhance the antioxidant and immune activity of 6-d-old larvae and 1-d-old and 9-d-old worker bees (P < 0.05), increase the Se content of body tissues (P < 0.05) and RJ (P < 0.05), and improve the expression of related genes (P < 0.05).

Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 798
Author(s):  
Maciej Sylwester Bryś ◽  
Patrycja Skowronek ◽  
Aneta Strachecka

Diet is an important factor in the proper development of the individual and the entire colony. A pollen diet affects honey bees in a number of ways. It can stimulate the number and type of hemocytes, the total number of proteins, carbohydrates and lipids, affect the histology of the middle intestine, and ensure the correct ontogenesis of the larvae. Moreover, selected single-flower diets can stimulate the development of the pharyngeal glands that produce royal jelly, thus conditioning the development of secretory immunity. Selected single-species pollen may also increase the phenol oxidase concentration, which contributes to the humoral response. A honey bee diet based on multi-flower pollen is more desirable than a mono-flower diet, but must be properly balanced.


Apidologie ◽  
2012 ◽  
Vol 43 (6) ◽  
pp. 685-697 ◽  
Author(s):  
Takuma Matsuoka ◽  
Takuji Kawashima ◽  
Tadashi Nakamura ◽  
Yoshihiro Kanamaru ◽  
Tomio Yabe

Author(s):  
Aimê de Almeida Longuini ◽  
Gabriel Moreno Martineli ◽  
Marcelo Polizel Camilli ◽  
Daniel Cavalcante Brambila de Barros ◽  
José Cavalcante Souza Vieira ◽  
...  

2016 ◽  
Vol 60 (2) ◽  
pp. 119-128
Author(s):  
Georgios Goras ◽  
Chrysoula Tananaki ◽  
Sofia Gounari ◽  
Elissavet Lazaridou ◽  
Dimitrios Kanelis ◽  
...  

Abstract We investigated the rearing of drone larvae grafted in queen cells. From the 1200 drone larvae that were grafted during spring and autumn, 875 were accepted (72.9%) and reared as queens. Drone larvae in false queen cells received royal jelly of the same composition and of the same amounts as queen larvae. Workers capped the queen cells as if they were drones, 9-10 days after the egg laying. Out of 60 accepted false queen cells, 21 (35%) were capped. The shape of false queen cells with drone larvae is unusually long with a characteristically elongate tip which is probably due to the falling of larvae. Bees start the destruction of the cells when the larvae were 3 days old and maximised it before and after capping. Protecting false queen cells in the colony by wrapping, reversing them upside down, or placing in a horizontal position, did not help. The only adult drones that emerged from the false queen cells were those protected in an incubator and in push-in cages. Adult drones from false queen cells had smaller wings, legs, and proboscis than regular drones. The results of this study verify previous reports that the bees do not recognise the different sex of the larvae at least at the early stage of larval development. The late destruction of false queen cells, the similarity in quality and quantity of the produced royal jelly, and the bigger drone cells, allow for the use of drone larvae in cups for the production of royal jelly.


2018 ◽  
Vol 62 (2) ◽  
pp. 223-232
Author(s):  
Dylan Cleary ◽  
Allen L. Szalanski ◽  
Clinton Trammel ◽  
Mary-Kate Williams ◽  
Amber Tripodi ◽  
...  

Abstract A study was conducted on the mitochondrial DNA genetic diversity of feral colonies and swarms of Apis mellifera from ten counties in Utah by sequencing the intergenic region of the cytochrome oxidase (COI-COII) gene region. A total of 20 haplotypes were found from 174 honey bee colony samples collected from 2008 to 2017. Samples belonged to the A (African) (48%); C (Eastern Europe) (43%); M (Western Europe) (4%); and O (Oriental) lineages (5%). Ten African A lineage haplotypes were observed with two unique to Utah among A lineage haplotypes recorded in the US. Haplotypes belonging to the A lineage were observed from six Utah counties located in the southern portion of the State, from elevations as high as 1357 m. All five C lineage haplotypes that were found have been observed from queen breeders in the US. Three haplotypes of the M lineage (n=7) and two of the O lineage (n=9) were also observed. This study provides evidence that honey bees of African descent are both common and diverse in wild populations of honey bees in southern Utah. The high levels of genetic diversity of A lineage honey bee colonies in Utah provide evidence that the lineage may have been established in Utah before the introduction of A lineage honey bees from Brazil to Texas in 1990.


2017 ◽  
Vol 7 (3) ◽  
pp. 195 ◽  
Author(s):  
Rattanamanee Chomchan ◽  
Sunisa Siripongvutikorn ◽  
Panupong Puttarak ◽  
Rungtip Rattanapon

Background: Young ricegrass (Oryza sativa L.) can be introduced as one of functional food product since sprouts have been much interested in this era due to their high nutritive values. Bio-fortification of selenium is one strategy to enhance plant bioactivity. However, the level of selenium used is varied among species of plants, hence, the proper level needs to be explored.Objective: To investigate the influence of selenium bio-fortification on nutritional compositions, bioactive compounds content and anti-oxidative properties of young ricegrass.Methods: Sodium selenite ranging 0, 10, 20, 30 and 40 mg Se/L has been hydroponically bio-fortified into ricegrass then grown for 8 d and investigated the changes of growth characteristics, selenium content, accumulation of bioactive compounds and anti-oxidative properties.Results:  Results revealed that selenium bio-fortified exogenously increased the accumulation of selenium in ricegrass by 529% at 40 mg Se/L treatment without negatively changes in leaves biomass at the day of harvesting. However, root part weight slightly decreased when increased selenium level. Selenium at concentration of 10 and 20 mg Se/L can stimulate the production of phenolic compounds and antioxidant activities in young ricegrass as measured by DPPH, ABTS, FRAP and chelating assay. Conversely, higher level of selenium fortification reduced the accumulation of phenolics in ricegrass may due to pro-oxidant expression.Conclusion: Selenium bio-fortification can be used as a useful technique to improve quality of ricegrass plantation. 10 mg Se/L treatment was an ideal to trigger the synthesis of phenolics which exhibited high antioxidant activities. While, 40 mg Se/L treatment was ultimate for the production of Se plant foods.Keywords: Antioxidant activities; Bio-fortification; Ricegrass; Selenium


Sign in / Sign up

Export Citation Format

Share Document