P6231Iron status and risk of cardio-metabolic diseases in European adults: a Mendelian randomization study

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
W Gan ◽  
D Bennett ◽  
A Mahajan ◽  
H Du ◽  
Z Chen ◽  
...  

Abstract Background Observational studies have reported conflicting results about the associations of iron status with risk of cardio-metabolic diseases but such studies are constrained by confounding and reverse causality. Purpose To assess the causal relevance of iron status biomarkers (transferrin, serum iron, and ferritin) for risk of coronary artery diseases (CAD), ischaemic stroke (IS), and type 2 diabetes (T2D), using Mendelian randomization (MR). Methods Effect size estimates for genetic variants associated with iron status biomarkers were obtained from the Genetics of Iron Status consortium (transferrin saturation, serum iron, and ferritin: n=48,972). The corresponding effects of these variants on the risk of CAD, IS and T2D were obtained from a meta-analysis of unrelated participants of European ancestry in the UK Biobank (UKB), together with previously recruited participants in CARDIOGRAMplusC4D (total n=90,377 CAD cases), MEGASTROKE (total n=43,381 IS cases) and DIAGRAM (total n=74,124 T2D cases), respectively. The main analysis used a two-sample inverse-variance weighted MR, while the sensitivity analyses used weighted-median, weighted-mode, MR-PRESSO, and MR-Egger approaches. Results MR analysis demonstrated significant inverse association of each of the three genetically-instrumented iron status biomarker with risk of CAD (transferrin saturation OR=0.96 [95% CI: 0.92–0.99], p=0.02; serum iron OR=0.93 [0.89–0.97], p=0.001; and ferritin OR=0.86 (0.79–0.94), p=0.001, per 1 SD higher level). In contrast, these iron status biomarkers showed positive associations with risk of T2D (transferrin saturation OR=1.06 [1.01–1.11], p=0.01; serum iron OR=1.06 [0.99–1.13], p=0.07; and ferritin OR=1.12 [0.99–1.26], p=0.06, per 1 SD higher level). There was positive, but non-significant, association of IS with each of the iron status biomarker analysed. Sensitivity analyses using several different MR approaches yielded concordant results. Conclusions Among European adults, iron status appeared to have causal associations, but in opposite directions, with the risk of CHD and T2D. Our findings highlight the need for caution about strategies for advocating iron supplementation in individuals with normal haemoglobin levels for prevention of CAD. Acknowledgement/Funding British Heart Found, Medical Research Council, Wellcome Trust, NIHR Biomedical Research Centre, Oxford

Stroke ◽  
2018 ◽  
Vol 49 (12) ◽  
pp. 2815-2821 ◽  
Author(s):  
Dipender Gill ◽  
Grace Monori ◽  
Ioanna Tzoulaki ◽  
Abbas Dehghan

Background and Purpose— Both iron deficiency and excess have been associated with stroke risk in observational studies. However, such associations may be attributable to confounding from environmental factors. This study uses the Mendelian randomization technique to overcome these limitations by investigating the association between genetic variants related to iron status and stroke risk. Methods— A study of 48 972 subjects performed by the Genetics of Iron Status consortium identified genetic variants with concordant relations to 4 biomarkers of iron status (serum iron, transferrin saturation, ferritin, and transferrin) that supported their use as instruments for overall iron status. Genetic estimates from the MEGASTROKE consortium were used to investigate the association between the same genetic variants and stroke risk. The 2-sample ratio method Mendelian randomization approach was used for the main analysis, with the MR-Egger and weighted median techniques used in sensitivity analyses. Results— The main results, reported as odds ratio (OR) of stroke per SD unit increase in genetically determined iron status biomarker, showed a detrimental effect of increased iron status on stroke risk (serum iron OR, 1.07; 95% CI, 1.01–1.14; [log-transformed] ferritin OR, 1.18; 95% CI, 1.02–1.36; and transferrin saturation OR, 1.06; 95% CI, 1.01–1.11). A higher transferrin, indicative of lower iron status, was also associated with decreased stroke risk (OR, 0.92; 95% CI, 0.86–0.99). Examining ischemic stroke subtypes, we found the detrimental effect of iron status to be driven by cardioembolic stroke. These results were supported in statistical sensitivity analyses more robust to the inclusion of pleiotropic variants. Conclusions— This study provides Mendelian randomization evidence that higher iron status is associated with increased stroke risk and, in particular, cardioembolic stroke. Further work is required to investigate the underlying mechanism and whether this can be targeted in preventative strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiahao Cai ◽  
Xiong Chen ◽  
Hongxuan Wang ◽  
Zixin Wei ◽  
Mei Li ◽  
...  

BackgroundObservational studies have shown an association of increased iron status with a higher risk of amyotrophic lateral sclerosis (ALS). Iron status might be a novel target for ALS prevention if a causal relationship exists. We aimed to reveal the causality between iron status and ALS incidence using a large two-sample Mendelian randomization (MR).MethodsSingle nucleotide polymorphisms (SNPs) for iron status were identified from a genome-wide association study (GWAS) on 48,972 individuals. The outcome data came from the largest ALS GWAS to date (20,806 cases; 59,804 controls). We conducted conservative analyses (using SNPs with concordant change of biomarkers of iron status) and liberal analyses (using SNPs associated with at least one of the biomarkers of iron status), with inverse variance weighted (IVW) method as the main analysis. We then performed sensitivity analyses including weighted median, MR-Egger and MR-pleiotropy residual sum and outlier, as well as leave-one-out analysis to detect pleiotropy.ResultsIn the conservative analyses, we found no evidence of association between four biomarkers of iron status and ALS using IVW method with odds ratio (OR) 1.00 [95% confidence interval (CI): 0.90–1.11] per standard deviation (SD) increase in iron, 0.96 (95% CI: 0.77–1.21) in ferritin, 0.99 (95% CI: 0.92–1.07) in transferrin saturation, and 1.04 (95% CI: 0.93–1.16) in transferrin. Findings from liberal analyses were similar, and sensitivity analyses suggested no pleiotropy detected (all p > 0.05).ConclusionOur findings suggest no causal effect between iron status and risk of ALS. Efforts to change the iron status to decrease ALS incidence might be impractical.


2020 ◽  
Author(s):  
Merete Ellingjord-Dale ◽  
Nikos Papadimitriou ◽  
Michalis Katsoulis ◽  
Chew Yee ◽  
Niki Dimou ◽  
...  

AbstractBackgroundObservational studies have reported either null or weak protective associations for coffee consumption and risk of breast cancer.MethodsWe conducted a two-sample Mendelian randomization randomization (MR) analysis to evaluate the relationship between coffee consumption and breast cancer risk using 33 single-nucleotide polymorphisms (SNPs) associated with coffee consumption from a genome-wide association (GWA) study on 212,119 female UK Biobank participants of White British ancestry. Risk estimates for breast cancer were retrieved from publicly available GWA summary statistics from the Breast Cancer Association Consortium (BCAC) on 122,977 cases (of which 69,501 were estrogen receptor (ER)-positive, 21,468 ER-negative) and 105,974 controls of European ancestry. Random-effects inverse variance weighted (IVW) MR analyses were performed along with several sensitivity analyses to assess the impact of potential MR assumption violations.ResultsOne cup per day increase in genetically predicted coffee consumption in women was not associated with risk of total (IVW random-effects; odds ratio (OR): 0.91, 95% confidence intervals (CI): 0.80-1.02, P: 0.12, P for instrument heterogeneity: 7.17e-13), ER-positive (OR=0.90, 95% CI: 0.79-1.02, P: 0.09) and ER-negative breast cancer (OR: 0.88, 95% CI: 0.75-1.03, P: 0.12). Null associations were also found in the sensitivity analyses using MR-Egger (total breast cancer; OR: 1.00, 95% CI: 0.80-1.25), weighted median (OR: 0.97, 95% CI: 0.89-1.05) and weighted mode (OR: 1.00, CI: 0.93-1.07).ConclusionsThe results of this large MR study do not support an association of genetically predicted coffee consumption on breast cancer risk, but we cannot rule out existence of a weak inverse association.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Fangkun Yang ◽  
Qinyi Bao ◽  
Zhuo Wang ◽  
Menghuai Ma ◽  
Jinlian Shen ◽  
...  

Background. Iron overload has been implicated in the pathogenesis of varicose veins (VVs). However, the association of serum iron status with other vascular diseases (VDs) is not well understood, which might be a potential target for VD prevention. This study was aimed at investigating the causal associations between iron status and VDs using the Mendelian randomization (MR) method. Methods. A two-sample MR was designed to investigate whether iron status was associated with VDs, based on iron data from a published genome-wide association study meta-analysis of 48,972 subjects of European descent and VD data obtained from the UK Biobank, including 361,194 British subjects (167,020 males and 194,174 females). We further explored whether there was sex difference in the associations between genetically predicted iron status and VDs. Results. The results demonstrated that iron status had a significant causal effect on VVs of lower extremities ( P < 0.001 ) and a potential effect on coronary atherosclerosis ( P < 0.05 for serum iron, ferritin, and transferrin saturation, respectively), but not on other VDs. Furthermore, higher iron status exerted a detrimental effect on VVs of lower extremities in both genders ( P < 0.05 ) and a protective effect on male patients with coronary atherosclerosis ( P < 0.05 for serum iron, ferritin, and transferrin saturation, respectively). Conclusions. This MR study provides robust evidence that higher iron status increases the risk of VVs of lower extremities, whereas it reduces the incidence of coronary atherosclerosis in the male population, which indicates that iron has divergent effects on vascular pathology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuanlong Hu ◽  
Xiaomeng Cheng ◽  
Huaiyu Mao ◽  
Xianhai Chen ◽  
Yue Cui ◽  
...  

Background/Aim: Several observational studies showed a significant association between elevated iron status biomarkers levels and sepsis with the unclear direction of causality. A two-sample bidirectional mendelian randomization (MR) study was designed to identify the causal direction between seven iron status traits and sepsis.Methods: Seven iron status traits were studied, including serum iron, ferritin, transferrin saturation, transferrin, hemoglobin, erythrocyte count, and reticulocyte count. MR analysis was first performed to estimate the causal effect of iron status on the risk of sepsis and then performed in the opposite direction. The multiplicative random-effects and fixed-effects inverse-variance weighted, weighted median-based method and MR-Egger were applied. MR-Egger regression, MR pleiotropy residual sum and outlier (MR-PRESSO), and Cochran's Q statistic methods were used to assess heterogeneity and pleiotropy.Results: Genetically predicted high levels of serum iron (OR = 1.21, 95%CI = 1.13–1.29, p = 3.16 × 10−4), ferritin (OR = 1.32, 95%CI = 1.07–1.62, p =0.009) and transferrin saturation (OR = 1.14, 95%CI = 1.06–1.23, p = 5.43 × 10−4) were associated with an increased risk of sepsis. No significant causal relationships between sepsis and other four iron status biomarkers were observed.Conclusions: This present bidirectional MR analysis suggested the causal association of the high iron status with sepsis susceptibility, while the reverse causality hypothesis did not hold. The levels of transferrin, hemoglobin, erythrocytes, and reticulocytes were not significantly associated with sepsis. Further studies will be required to confirm the potential clinical value of such a prevention and treatment strategy.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
David Wu ◽  
Huijun Huang ◽  
Yu Qian ◽  
Yingying Mao

Background and Purpose: Linoleic acid (LA) is an essential fatty acid involved in eicosanoid synthesis. Epidemiological studies have suggested an inverse association between circulating LA levels and ischemic stroke (IS), however, it is unclear whether the observed association is causal or due to confounding or reverse causation. We conducted a Mendelian randomization (MR) to evaluate the potential causal relationship between circulating LA levels and risk of IS. Methods: Summary statistics for IS were obtained from the MEGASTROKE consortium, including 34,217 IS cases and 404,630 controls of European ancestry. Seventeen single nucleotide polymorphisms (SNPs) associated with circulating LA levels were used as instrumental variables (IVs) in the MR analysis, with another two SNP sets used in sensitivity analyses. We used the inverse-variance weighted method to evaluate the potential causal associations of circulating LA levels with IS, complemented with other MR approaches including weighted-median, weighted-mode, MR Pleiotropy RESidual Sum and Outlier test and MR-Egger regression. Results: Each 1-standard deviation increase of genetically-predicted LA levels was inversely associated with a 2% (95% confidence interval [CI], 1%-3%) reduction in IS incidence. Subgroup analyses showed significant causal associations for large artery stroke (OR, 0.95; 95% CI, 0.92-0.98; P =3.45х10 -4 ), but not for cardioembolic stroke (OR, 0.98; 95% CI, 0.96-1.00; P =0.05) and small vessel stroke (OR, 1.02; 95% CI, 0.99-1.05; P =0.11). Sensitivity analyses using two additional SNP sets as IVs produced consistent findings. Conclusions: Our study provides evidence for an inverse causal association of circulating LA levels with risk of IS, particularly large artery stroke. Further studies are warranted to clarify the underlying mechanism of LA in the prevention of IS.


2019 ◽  
Vol 110 (4) ◽  
pp. 959-968 ◽  
Author(s):  
Lulu Huang ◽  
Longman Li ◽  
Xiaoyu Luo ◽  
Sifang Huang ◽  
Qingzhi Hou ◽  
...  

ABSTRACT Background Observational studies present conflicting results about a possible association of iron status with asthma risk, pointing to potential modifiable targets for prevention. Objective The aim of this study was to use Mendelian randomization (MR) to estimate associations between iron status and asthma risk. Methods We used the Genetics of Iron Status consortium to identify genetic variants that could be used as instrumental variables for the effect of systemic iron status. The following sets of instruments were used: a conservative set (instruments restricted to variants with concordant relations to 4 iron status biomarkers) and a liberal set (instruments selected using variants associated with at least 1 of 4 iron status biomarkers). Associations of these genetic variants with asthma risk were estimated in data from the Trans-National Asthma Genetics Consortium (TAGC) and the GABRIEL consortium (A Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community). Data on the association of genetic variants with iron status and with asthma were combined to assess the influence of iron status on asthma risk. Results In the conservative approach, the MR OR of asthma was 1.00 (95% CI: 0.91, 1.10) per SD increase in iron, 0.96 (95% CI: 0.78, 1.18) in log-transformed ferritin, 0.99 (95% CI: 0.93, 1.06) in transferrin saturation, and 1.03 (95% CI: 0.93, 1.14) in transferrin in the TAGC dataset (none of the values were statistically significant). An age at onset–stratified analysis in the GABRIEL dataset suggested no effect of iron status in childhood onset, later onset, or unknown age at onset asthma. Findings from the liberal approach were similar, and the results persisted in sensitivity analyses (all P > 0.05). Conclusions This MR study does not provide evidence of an effect of iron status on asthma, suggesting that efforts to change iron concentrations will probably not result in decreased risk of asthma.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiu Lun Au Yeung ◽  
Jie V Zhao ◽  
C Mary Schooling

Abstract Background Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19 phenotypes (hospitalized and severe cases). Method We identified genetic instruments for fasting glucose (n = 133,010), 2 h glucose (n = 42,854), glycated hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted median method. Results We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR: 1.00 per unit increase in log odds of having diabetes, 95%CI 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%CI 0.95 to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%CI 0.93 to 1.08 for severe COVID-19). There were no strong evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for fasting glucose albeit with wide confidence interval. Conclusion We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of COVID-19, additional studies are needed to verify our findings.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mengqiao Xu ◽  
Shengguo Li ◽  
Jundong Zhu ◽  
Dawei Luo ◽  
Weitao Song ◽  
...  

Abstract Background The causal effects of plasma lipid concentrations and the risk of primary open angle glaucoma (POAG) are still unclear. Thus, the purpose of this study was to identify, applying a two-sample Mendelian randomization (MR) analysis, whether plasma lipid concentrations are causally associated with the risk of POAG. Methods Two-sample MR analysis of data from a genome-wide association study (GWAS) was performed to investigate the causal role of plasma lipid levels and POAG. A total of 185 independent single-nucleotide polymorphisms (SNPs) associated with plasma lipid levels were selected as instrumental variables (IVs). The SNPs were obtained from a meta-analysis of GWAS based on 188,577 European-ancestry individuals for MR analyses. Association with POAG for the SNPs was obtained from a GWAS conducted among the United Kingdom (UK) Biobank study participants with a total of 463,010 European-ancestry individuals. Four MR methods (inverse variance weighted [IVW], weighted mode, weighted median, and MR-Egger regression) were applied to obtain the overall causal estimate for multiple, instrumental SNPs. Results Using the IVW analysis method, no evidence was found to support a causal association between plasma LDL-C level and POAG risk (β = − 0.00026; 95% CI = -0.00062, 0.00011; P = 0.165) with no significant heterogeneity among SNPs. The overall causal estimate between plasma LDL-C level and POAG was consistent using the other three MR methods. Using the four MR methods, no evidence of an association between plasma HDL-C (β = 0.00023; 95% CI = -0.00015, 0.00061; P = 0.238; IVW method) or TG levels (β = − 0.00028; 95% CI = -0.00071, 0.00015; P = 0.206; IVW method) and POAG risk was found. Sensitivity analyses did not reveal any sign of directional pleiotropy. Conclusions The present study did not find any evidence for a causal association between plasma lipid levels and POAG risk. Further research is needed to elucidate the potential biological mechanisms to provide a reasonable interpretation for these results.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 526 ◽  
Author(s):  
Shuai Yuan ◽  
Paul Carter ◽  
Mathew Vithayathil ◽  
Siddhartha Kar ◽  
Edward Giovannucci ◽  
...  

We conducted a two-sample Mendelian randomization study to explore the associations of iron status with overall cancer and 22 site-specific cancers. Single-nucleotide polymorphisms for iron status were obtained from a genome-wide association study of 48,972 European-descent individuals. Summary-level data for breast and other cancers were obtained from the Breast Cancer Association Consortium and UK Biobank. Genetically predicted iron status was positively associated with liver cancer and inversely associated with brain cancer but not associated with overall cancer or the other 20 studied cancer sites at p < 0.05. The odds ratios of liver cancer were 2.45 (95% CI, 0.81, 7.45; p = 0.11), 2.11 (1.16, 3.83; p = 0.02), 10.89 (2.44, 48.59; p = 0.002) and 0.30 (0.17, 0.53; p = 2 × 10−5) for one standard deviation increment of serum iron, transferrin saturation, ferritin and transferrin levels, respectively. For brain cancer, the corresponding odds ratios were 0.69 (0.48, 1.00; p = 0.05), 0.75 (0.59, 0.97; p = 0.03), 0.41 (0.20, 0.88; p = 0.02) and 1.49 (1.04, 2.14; p = 0.03). Genetically high iron status was positively associated with liver cancer and inversely associated with brain cancer.


Sign in / Sign up

Export Citation Format

Share Document