2284Sex and age differences in short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: a nationwide case-crossover study in Japan

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
B Zhao ◽  
F H Johnston ◽  
F Salimi ◽  
K Negishi

Abstract Introduction Accumulating evidence has shown the elevated risk for cardiovascular diseases (CVD) with exposure to air pollution, such as fine particles <2.5μm in aerodynamic diameter (PM2.5). A bi-directional relationship exists between air pollution and traditional CV risk factors like obesity, diabetes, and hypertension. However, little is known about the effect of age and sex on association between ambient air pollution and out-of-hospital cardiac arrest (OHCA). Purpose This study aimed to identify sex and age differences in the associations between exposure to PM2.5 and OHCA in Japan. Methods A case-crossover design was used to determine the odds ratio (OR) of OHCA across Japan with daily PM2.5 exposure on the day of the arrest or 1–3 days before it (lag 0–3). OHCA cases were identified through the All-Japan Utstein registry of the Fire and Disaster Management Agency from January 1, 2014 to December 31, 2015. OHCAs were investigated by conditional logistic regression adjusted for daily temperature and relative humidity with stratification by sex and age. Results A total of 249,372 OHCAs were included during study period. Their mean age was 75 years and 57% were male. Each 10 μg/m3 increase in daily PM2.5 exposure over 4 days was associated with all cause OHCA risk for male (lag 0: OR 1.022, 95% confidence interval (CI) 1.013, 1.031; lag 1: OR 1.016, 95% CI 1.007, 1.025; lag 2: OR 1.016, 95% CI 1.007, 1.026; lag 3: OR 1.017, 95% CI 1.008, 1.027; lag 0–1: OR 1.025, 95% CI 1.015, 1.036). Increased risk in OHCA was also found with lag 1 to lag 3 PM2.5 exposure among women. Lag 0 to lag 3 PM2.5 exposures were significantly associated with OHCA among patients older than 65 years. Among 35 to 64 years, only lag 3 PM2.5 exposure was associated with an increased risk in OHCA. No significant association was observed between PM2.5 exposure and OHCA among patients less than 35 years. Conclusions Short-term exposure to PM2.5 is associated with an increased risk of OHCA in both sexes. Patients older than 65 years were more susceptible to PM2.5 exposure than younger age group.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
B Zhao ◽  
F H Johnston ◽  
F Salimi ◽  
K Negishi

Abstract Introduction The cardiovascular health consequences of ambient air pollution generally equal or exceed those due to pulmonary diseases and cancers. Particulate matter less than 2.5μm in aerodynamic diameter (PM2.5) has become a major focus of research on the short-term exposure to air pollution and cardiovascular disease. However, the evidence regarding the association between several air pollutants and out-of-hospital cardiac arrest (OHCA), has been inconsistent, which could be due to limited sample sizes (∼11,000). Thus, a larger study may assist in characterising possible associations. Purpose This study aimed to identify the associations between exposure to ambient air pollution and the incidence of OHCA in Japan. Methods A case-crossover design was used to determine the odds ratio (OR) of OHCA across Japan with daily exposure of PM2.5, carbon monoxide (CO), photochemical oxidants (Ox), and sulfur dioxide (SO2) on the day of the arrest or 1–3 days before it (lag 0–3). OHCA cases were identified through the All-Japan Utstein registry of the Fire and Disaster Management Agency from January 1, 2014 to December 31, 2015. All cause OHCAs were investigated by conditional logistic regression adjusted for daily temperature and relative humidity. Results A total of 249,372 OHCAs were included during study period. Each 10 μg/m3 increase in daily PM2.5 exposure over 4 days was associated with all cause OHCA risk (lag 0: OR 1.017, 95% confidence interval (CI) 1.010, 1.024; lag 1: OR 1.015, 95% CI 1.008, 1.022; lag 2: OR 1.018, 95% CI 1.011, 1.025; lag 3: OR 1.021, 95% CI 1.014, 1.028; lag 0–1: OR 1.022, 95% CI 1.014, 1.030). CO, Ox and SO2 also showed significant associations with OHCAs. In the multi-pollutant model, the effects of PM2.5 remained independent of CO, Ox and SO2 (Table). Conclusion Short-term exposure to PM2.5 was independently associated with an increased risk of OHCA.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
L Moderato ◽  
D Lazzeroni ◽  
A Biagi ◽  
T Spezzano ◽  
B Matrone ◽  
...  

Abstract Introduction Out-of-hospital cardiac arrest (OHCA) is a leading cause of death worldwide; it accounts for up to 50% of all cardiovascular deaths.It is well established that ambient air pollution triggers fatal and non-fatal cardiovascular events. However, the impact of air pollution on OHCA is still controversial. The objective of this study was to investigate the impact of short-term exposure to outdoor air pollutants on the incidence of OHCA in the urban area of Piacenza, Italy, one of the most polluted area in Europe. Methods From 01/01/2010 to 31/12/2017 day-by-day PM10 and PM2.5 levels, as well as climatic data, were extracted from Environmental Protection Agency (ARPA) local monitoring stations. OHCA were extracted from the prospective registry of Community-based automated external defibrillator Cardiac arrest “Progetto Vita”. OHCA data were included: audio recordings, event information and ECG tracings. Logistic regression analysis was used to estimate the association between the risk of OHC, expressed as odds ratios (OR), associated with the PM10 and PM2.5 levels. Results Mean PM10 levels were 33±29 μg/m3 and the safety threshold (50 μg/m3) recommended by both WHO and Italian legislation has been exceeded for 535 days (17.5%). Mean PM 5 levels were 33±29 μg/m3. During the follow-up period, 880 OHCA were recorded on 750 days; the remaining 2174 days without OHCA were used as control days. Mean age of OHCA patients was 76±15 years; male gender was prevalent (55% male vs 45% female; &lt;0.001). Concentration of PM10 and PM 2.5 were significantly higher on days with the occurrence of OHCA (PM10 levels: 37.7±22 μg/m3 vs 32.7±19 μg/m3; p&lt;0.001; PM 2.5 levels: 26±16 vs 22±15 p&lt;0.001). Risk of OHCA was significantly increased with the progressive increase of PM10 (OR: 1.009, 95% CI 1.004–1.015; p&lt;0.001) and PM2.5 levels (OR 1.012, 95% CI 1.007–1.017; p&lt;0.001). Interestingly, the above mentioned results remain independent even when correct for external temperature or season (PM 2.5 levels: p=0.01 – PM 10 levels: p=0.002), Moreover, dividing PM10 values in quintiles, a 1.9 fold higher risk of cardiac arrest has been showed in the highest quintile (Highest quintile cut-off: &lt;48μg/m3) Conclusions In large cohort of patients from a high pollution area, both PM10 and PM2.5 levels are associated with the risk of Out-of-hospital cardiac arrest. PM10 and PM2.5 levels and risk of OHCA Funding Acknowledgement Type of funding source: None


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
You-Jung Choi ◽  
Sun-Hwa Kim ◽  
Si-Hyuck Kang ◽  
Sun-Young Kim ◽  
Ok-Jin Kim ◽  
...  

AbstractElevated blood pressure (BP) has been proposed as a possible pathophysiological mechanism linking exposure to ambient air pollution and the increased risk of cardiovascular mortality and morbidity. In this study, we investigated the hourly relationship between ambient air pollutants and BP. BP measurements were extracted from the electronic health record database of the Seoul National University Bundang Hospital from February 2015 to June 2017. A total of 98,577 individual BP measurements were matched to the hourly levels of air pollutants. A generalized additive model was constructed for hour lags of 0–8 of air pollutants adjusting for age, sex, meteorological variables, and time trend. Systolic BP was shown to be significantly lower at 2–4 hours and 3–5 hours after increased levels of SO2 and CO, respectively (0.24 mmHg and 0.26 mmHg for an interquartile range, respectively). In contrast, O3 and NO2 were associated with significantly increased systolic BP at 3–5 lag hours and at 0–2 lag hours, respectively. BP elevation in association with O3 and NO2 was shown to be significantly greater in hypertensive patients than normotensive subjects. Our findings suggest that short-term exposure to air pollution may be associated with elevated BP.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yakun Zhao ◽  
Dehui Kong ◽  
Jia Fu ◽  
Yongqiao Zhang ◽  
Yuxiong Chen ◽  
...  

Background: Previous studies suggested that exposure to air pollution could increase risk of asthma attacks in children. The aim of this study is to investigate the short-term effects of exposure to ambient air pollution on asthma hospital admissions in children in Beijing, a city with serious air pollution and high-quality medical care at the same time.Methods: We collected hospital admission data of asthma patients aged ≤ 18 years old from 56 hospitals from 2013 to 2016 in Beijing, China. Time-stratified case-crossover design and conditional Poisson regression were applied to explore the association between risk of asthma admission in children and the daily concentration of six air pollutants [particulate matter ≤ 2.5 μm (PM2.5), particulate matter ≤ 10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3)], adjusting for meteorological factors and other pollutants. Additionally, stratified analyses were performed by age, gender, and season.Results: In the single-pollutant models, higher levels of PM2.5, SO2, and NO2 were significantly associated with increased risk of hospital admission for asthma in children. The strongest effect was observed in NO2 at lag06 (RR = 1.25, 95%CI: 1.06-1.48), followed by SO2 at lag05 (RR = 1.17, 95%CI: 1.05–1.31). The robustness of effects of SO2 and NO2 were shown in two-pollutant models. Stratified analyses further indicated that pre-school children (aged ≤ 6 years) were more susceptible to SO2. The effects of SO2 were stronger in the cold season, while the effects of NO2 were stronger in the warm season. No significant sex-specific differences were observed.Conclusions: These results suggested that high levels of air pollution had an adverse effect on childhood asthma, even in a region with high-quality healthcare. Therefore, it will be significant to decrease hospital admissions for asthma in children by controlling air pollution emission and avoiding exposure to air pollution.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2518
Author(s):  
Ariana Lammers ◽  
Anne H. Neerincx ◽  
Susanne J. H. Vijverberg ◽  
Cristina Longo ◽  
Nicole A. H. Janssen ◽  
...  

Environmental factors, such as air pollution, can affect the composition of exhaled breath, and should be well understood before biomarkers in exhaled breath can be used in clinical practice. Our objective was to investigate whether short-term exposures to air pollution can be detected in the exhaled breath profile of healthy adults. In this study, 20 healthy young adults were exposed 2–4 times to the ambient air near a major airport and two highways. Before and after each 5 h exposure, exhaled breath was analyzed using an electronic nose (eNose) consisting of seven different cross-reactive metal-oxide sensors. The discrimination between pre and post-exposure was investigated with multilevel partial least square discriminant analysis (PLSDA), followed by linear discriminant and receiver operating characteristic (ROC) analysis, for all data (71 visits), and for a training (51 visits) and validation set (20 visits). Using all eNose measurements and the training set, discrimination between pre and post-exposure resulted in an area under the ROC curve of 0.83 (95% CI = 0.76–0.89) and 0.84 (95% CI = 0.75–0.92), whereas it decreased to 0.66 (95% CI = 0.48–0.84) in the validation set. Short-term exposure to high levels of air pollution potentially influences the exhaled breath profiles of healthy adults, however, the effects may be minimal for regular daily exposures.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhan Ren ◽  
Xingyuan Liu ◽  
Tianyu Liu ◽  
Dieyi Chen ◽  
Kuizhuang Jiao ◽  
...  

Abstract Background Positive associations between ambient PM2.5 and cardiorespiratory disease have been well demonstrated during the past decade. However, few studies have examined the adverse effects of PM2.5 based on an entire population of a megalopolis. In addition, most studies in China have used averaged data, which results in variations between monitoring and personal exposure values, creating an inherent and unavoidable type of measurement error. Methods This study was conducted in Wuhan, a megacity in central China with about 10.9 million people. Daily hospital admission records, from October 2016 to December 2018, were obtained from the Wuhan Information center of Health and Family Planning, which administrates all hospitals in Wuhan. Daily air pollution concentrations and weather variables in Wuhan during the study period were collected. We developed a land use regression model (LUR) to assess individual PM2.5 exposure. Time-stratified case-crossover design and conditional logistic regression models were adopted to estimate cardiorespiratory hospitalization risks associated with short-term exposure to PM2.5. We also conducted stratification analyses by age, sex, and season. Results A total of 2,806,115 hospital admissions records were collected during the study period, from which we identified 332,090 cardiovascular disease admissions and 159,365 respiratory disease admissions. Short-term exposure to PM2.5 was associated with an increased risk of a cardiorespiratory hospital admission. A 10 μg/m3 increase in PM2.5 (lag0–2 days) was associated with an increase in hospital admissions of 1.23% (95% CI 1.01–1.45%) and 1.95% (95% CI 1.63–2.27%) for cardiovascular and respiratory diseases, respectively. The elderly were at higher PM-induced risk. The associations appeared to be more evident in the cold season than in the warm season. Conclusions This study contributes evidence of short-term effects of PM2.5 on cardiorespiratory hospital admissions, which may be helpful for air pollution control and disease prevention in Wuhan.


Sign in / Sign up

Export Citation Format

Share Document