sRNA STnc150 is involved in virulence regulation of Salmonella Typhimurium by targeting fimA mRNA

2021 ◽  
Vol 368 (18) ◽  
Author(s):  
Jing Li ◽  
Na Li ◽  
Chengcheng Ning ◽  
Yun Guo ◽  
Chunhui Ji ◽  
...  

ABSTRACT Small RNAs (sRNAs) are essential virulent regulators in Salmonella typhimurium (STM). To explore the role of sRNA STnc150 in regulating STM virulence, we constructed a STnc150 deletion strain (ΔSTnc150) and its complementary strain (ΔSTnc150/C). Then, we compared their characteristics to their original parent strain experimentally, identified the target genes of STnc150 and determined the expression levels of target genes. The results showed that the ΔSTnc150 strain exhibited delayed biofilm formation, enhanced adhesion to macrophages, significantly reduced LD50, increased liver and spleen viral loads and more vital pathological damaging ability than its parent and complementary strains. Further, bioinformatics combined with the bacterial dual plasmid reporter system confirmed that the bases 72–88 of STnc150 locating at the secondary stem-loop structure of the STnc150 are complementary with the bases 1–19 in the 5′-terminal of fimA mRNA of the type 1 fimbriae subunit. Western blot analysis showed that fimA protein level was increased in STnc150 strain compared with its parent and complementary strains. Together, this study suggested that STnc150 can down-regulate STM fimA expression at the translation level, which provided insights into the regulatory mechanisms of sRNAs in virulence of STM.

Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
Baiba Krivmane ◽  
Ilze Šņepste ◽  
Vilnis Šķipars ◽  
Igor Yakovlev ◽  
Carl Gunnar Fossdal ◽  
...  

MicroRNAs (miRNAs) are non-protein coding RNAs of ~20–24 nucleotides in length that play an important role in many biological and metabolic processes, including the regulation of gene expression, plant growth and developmental processes, as well as responses to stress and pathogens. The aim of this study was to identify and characterize novel and conserved microRNAs expressed in methyl jasmonate-treated Scots pine needles. In addition, potential precursor sequences and target genes of the identified miRNAs were determined by alignment to the Pinus unigene set. Potential precursor sequences were identified using the miRAtool, conserved miRNA precursors were also tested for the ability to form the required stem-loop structure, and the minimal folding free energy indexes were calculated. By comparison with miRBase, 4975 annotated sequences were identified and assigned to 173 miRNA groups, belonging to a total of 60 conserved miRNA families. A total of 1029 potential novel miRNAs, grouped into 34 families were found, and 46 predicted precursor sequences were identified. A total of 136 potential target genes targeted by 28 families were identified. The majority of previously reported highly conserved plant miRNAs were identified in this study, as well as some conserved miRNAs previously reported to be monocot specific. No conserved dicot-specific miRNAs were identified. A number of potential gymnosperm or conifer specific miRNAs were found, shared among a range of conifer species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chia-Ching Lin ◽  
Yi-Ru Shen ◽  
Chi-Chih Chang ◽  
Xiang-Yi Guo ◽  
Yun-Yun Young ◽  
...  

AbstractDifferent levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3′ ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by Zc3h12a gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on Zc3h12a 3′-UTR, thereby promotes Zc3h12a uridylation and degradation. Zc3h12a from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated Zc3h12a is significantly reduced in Tut7-/- cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.


1995 ◽  
Vol 15 (4) ◽  
pp. 2231-2244 ◽  
Author(s):  
S Zhang ◽  
M J Ruiz-Echevarria ◽  
Y Quan ◽  
S W Peltz

In both prokaryotes and eukaryotes, nonsense mutations in a gene can enhance the decay rate or reduce the abundance of the mRNA transcribed from that gene, and we call this process nonsense-mediated mRNA decay. We have been investigating the cis-acting sequences involved in this decay pathway. Previous experiments have demonstrated that, in addition to a nonsense codon, specific sequences 3' of a nonsense mutation, which have been defined as downstream elements, are required for mRNA destabilization. The results presented here identify a sequence motif (TGYYGATGYYYYY, where Y stands for either T or C) that can predict regions in genes that, when positioned 3' of a nonsense codon, promote rapid decay of its mRNA. Sequences harboring two copies of the motif from five regions in the PGK1, ADE3, and HIS4 genes were able to function as downstream elements. In addition, four copies of this motif can function as an independent downstream element. The sequences flanking the motif played a more significant role in modulating its activity when fewer copies of the sequence motif were present. Our results indicate the sequences 5' of the motif can modulate its activity by maintaining a certain distance between the sequence motif and the termination codon. We also suggest that the sequences 3' of the motif modulate the activity of the downstream element by forming RNA secondary structures. Consistent with this view, a stem-loop structure positioned 3' of the sequence motif can enhance the activity of the downstream element. This sequence motif is one of the few elements that have been identified that can predict regions in genes that can be involved in mRNA turnover. The role of these sequences in mRNA decay is discussed.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10502
Author(s):  
Huan Guo ◽  
Xinke Zhao ◽  
Haixiang Su ◽  
Chengxu Ma ◽  
Kai Liu ◽  
...  

Background Radiation exposure of the thorax is associated with a greatly increased risk of cardiac morbidity and mortality even after several decades of advancement in the field. Although many studies have demonstrated the damaging influence of ionizing radiation on cardiac fibroblast (CF) structure and function, myocardial fibrosis, the molecular mechanism behind this damage is not well understood. miR-21, a small microRNA, promotes the activation of CFs, leading to cardiac fibrosis. miR-21 is overexpressed after irradiation; however, the relationship between increased miR-21 and myocardial fibrosis after irradiation is unclear. This study was conducted to investigate gene expression after radiation-induced CF damage and the role of miR-21 in this process in rats. Methods We sequenced irradiated rat CFs and performed weighted correlation network analysis (WGCNA) combined with differentially expressed gene (DEG) analysis to observe the effect on the expression profile of CF genes after radiation. Results DEG analysis showed that the degree of gene changes increased with the radiation dose. WGCNA revealed three module eigengenes (MEs) associated with 8.5-Gy-radiation—the Yellow, Brown, Blue modules. The three module eigengenes were related to apoptosis, G2/M phase, and cell death and S phase, respectively. By blocking with the cardiac fibrosis miRNA miR-21, we found that miR-21 was associated with G2/M blockade in the cell cycle and was mainly involved in regulating extracellular matrix-related genes, including Grem1, Clu, Gdf15, Ccl7, and Cxcl1. Stem-loop quantitative real-time PCR was performed to verify the expression of these genes. Five genes showed higher expression after 8.5 Gy-radiation in CFs. The target genes of miR-21 predicted online were Gdf15 and Rsad2, which showed much higher expression after treatment with antagomir-miR-21 in 8.5-Gy-irradiated CFs. Thus, miR-21 may play the role of fibrosis and G2/M blockade in regulating Grem1, Clu, Gdf15, Ccl7, Cxcl1, and Rsad2 post-irradiation.


2002 ◽  
Vol 76 (22) ◽  
pp. 11245-11253 ◽  
Author(s):  
Melissa K. Hill ◽  
Miranda Shehu-Xhilaga ◽  
Suzanne M. Crowe ◽  
Johnson Mak

ABSTRACT The full-length human immunodeficiency virus type 1 (HIV-1) mRNA encodes two precursor polyproteins, Gag and GagProPol. An infrequent ribosomal frameshifting event allows these proteins to be synthesized from the same mRNA in a predetermined ratio of 20 Gag proteins for each GagProPol. The RNA frameshift signal consists of a slippery sequence and a hairpin stem-loop whose thermodynamic stability has been shown in in vitro translation systems to be critical to frameshifting efficiency. In this study we examined the frameshift region of HIV-1, investigating the effects of altering stem-loop stability in the context of the complete viral genome and assessing the role of the Gag spacer peptide p1 and the GagProPol transframe (TF) protein that are encoded in this region. By creating a series of frameshift region mutants that systematically altered the stability of the frameshift stem-loop and the protein sequences of the p1 spacer peptide and TF protein, we have demonstrated the importance of stem-loop thermodynamic stability in frameshifting efficiency and viral infectivity. Multiple changes to the amino acid sequence of p1 resulted in altered protein processing, reduced genomic RNA dimer stability, and abolished viral infectivity. The role of the two highly conserved proline residues in p1 (position 7 and 13) was also investigated. Replacement of the two proline residues by leucines resulted in mutants with altered protein processing and reduced genomic RNA dimer stability that were also noninfectious. The unique ability of proline to confer conformational constraints on a peptide suggests that the correct folding of p1 may be important for viral function.


2006 ◽  
Vol 80 (13) ◽  
pp. 6225-6234 ◽  
Author(s):  
Tobias Steinfeldt ◽  
Tim Finsterbusch ◽  
Annette Mankertz

ABSTRACT The replication of porcine circovirus type 1 (PCV1) is thought to occur by rolling-circle replication (RCR), whereby the introduction of a single-strand break generates a free 3′-hydroxyl group serving as a primer for subsequent DNA synthesis. The covalently closed, single-stranded genome of PCV1 replicates via a double-stranded replicative intermediate, and the two virus-encoded replication-associated proteins Rep and Rep′ have been demonstrated to be necessary for virus replication. However, although postulated to be involved in RCR-based virus replication, the mechanism of action of Rep and Rep′ is as yet unknown. In this study, the ability of PCV1 Rep and Rep′ to “nick” and “join” strand discontinuities within synthetic oligonucleotides corresponding to the origin of replication of PCV1 was investigated in vitro. Both proteins were demonstrated to be able to cleave the viral strand between nucleotides 7 and 8 within the conserved nonanucleotide motif (5′-TAGTATTAC-3′) located at the apex of a putative stem-loop structure. In addition, the Rep and Rep′ proteins of PCV1 were demonstrated to be capable of joining viral single-stranded DNA fragments, suggesting that these proteins also play roles in the termination of virus DNA replication. This joining activity was demonstrated to be strictly dependent on preceding substrate cleavage and the close proximity of origin fragments accomplished by base pairing in the stem-loop structure. The dual “nicking/joining” activities associated with PCV1 Rep and Rep′ are pivotal events underlying the RCR-based replication of porcine circoviruses in mammalian cells.


2000 ◽  
Vol 74 (12) ◽  
pp. 5639-5646 ◽  
Author(s):  
David Harrich ◽  
C. William Hooker ◽  
Emma Parry

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) RNA genome is flanked by a repeated sequence (R) that is required for HIV-1 replication. The first 57 nucleotides of R form a stable stem-loop structure called the transactivation response element (TAR) that can interact with the virally encoded transcription activator protein, Tat, to promote high levels of gene expression. Recently, we demonstrated that TAR is also important for efficient HIV-1 reverse transcription, since HIV-1 mutated in the upper stem-loop of TAR showed a reduced ability both to initiate and to complete reverse transcription. We have analyzed a series of HIV-1 mutant viruses to better defined the structural or sequence elements required for natural endogenous reverse transcription and packaging of virion RNA. Our results indicate that the requirement for TAR in reverse transcription is conformation dependent, since mutants with mutations that alter the upper stem-loop orientation are defective for reverse transcription initiation and have minor defects in RNA packaging. In contrast, TAR mutations that allowed the formation of alternative upper stem-loop structure greatly reduced RNA packaging but did not affect reverse transcription efficiency. These results are consistent with direct involvement of the upper stem-loop structure in packaging of genomic RNA and suggest that the TAR RNA stem-loop from nucleotide +18 to +42 interacts with other components of the reverse transcription initiation complex to promote efficient reverse transcription.


2002 ◽  
Vol 76 (15) ◽  
pp. 7868-7873 ◽  
Author(s):  
Amalio Telenti ◽  
Raquel Martinez ◽  
Miguel Munoz ◽  
Gabriela Bleiber ◽  
Gilbert Greub ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 uses ribosomal frameshifting for translation of the Gag-Pol polyprotein. Frameshift activities are thought to be tightly regulated. Analysis of gag p1 sequences from 270 plasma virions identified in 64% of the samples the occurrence of polymorphism that could lead to changes in thermodynamic stability of the stem-loop. Expression in Saccharomyces cerevisiae of p1-β-galactosidase fusion proteins from 10 representative natural stem-loop variants and three laboratory mutant constructs (predicted the thermodynamic stability [ΔG°] ranging from −23.0 to −4.3 kcal/mol) identified a reduction in frameshift activity of 13 to 67% compared with constructs with the wild-type stem-loop (ΔG°, −23.5 kcal/mol). Viruses carrying stem-loops associated with greater than 60% reductions in frameshift activity presented profound defects in viral replication. In contrast, viruses with stem-loop structures associated with 16 to 42% reductions in frameshift efficiency displayed no significant viral replication deficit.


2000 ◽  
Vol 74 (3) ◽  
pp. 1094-1100 ◽  
Author(s):  
Joshua T. Bartoe ◽  
Björn Albrecht ◽  
Nathaniel D. Collins ◽  
Michael D. Robek ◽  
Lee Ratner ◽  
...  

ABSTRACT Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and is associated with a variety of immune-mediated disorders. The role of four open reading frames (ORFs), located between env and the 3′ long terminal repeat of HTLV-1, in mediating disease is not entirely clear. By differential splicing, ORF II encodes two proteins, p13II and p30II, both of which have not been functionally defined. p13II localizes to mitochondria and may alter the configuration of the tubular network of this cellular organelle. p30II localizes to the nucleolus and shares homology with the transcription factors Oct-1 and -2, Pit-1, and POU-M1. Both p13II and p30II are dispensable for infection and immortalization of primary human and rabbit lymphocytes in vitro. To test the role of ORF II gene products in vivo, we inoculated rabbits with lethally irradiated cell lines expressing the wild-type molecular clone of HTLV-1 (ACH.1) or a clone containing selected mutations in ORF II (ACH.30/13.1). ACH.1-inoculated animals maintained higher HTLV-1-specific antibody titers than animals inoculated with ACH.30/13.1. Viral p19 antigen was transiently detected in ex vivo cultures of peripheral blood mononuclear cells (PBMC) from only two ACH.30/13.1-inoculated rabbits, while PBMC cultures from all ACH.1-inoculated rabbits routinely produced p19 antigen. In only three of six animals exposed to the ACH.p30II/p13IIclone could provirus be consistently PCR amplified from extracted PBMC DNA and quantitative competitive PCR showed the proviral loads in PBMC from ACH.p30II/p13II-infected rabbits to be dramatically lower than the proviral loads in rabbits exposed to ACH. Our data indicate selected mutations in pX ORF II diminish the ability of HTLV-1 to maintain high viral loads in vivo and suggest an important function for p13II and p30II in viral pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document