Meso-tartrate inhibits intracellular replication of Coxiella burnetii, the causative agent of the zoonotic disease Q fever

2019 ◽  
Vol 77 (8) ◽  
Author(s):  
Mebratu A Bitew ◽  
Nadeeka K Wawegama ◽  
Hayley J Newton ◽  
Fiona M Sansom

ABSTRACT The zoonotic disease Q fever caused by the intracellular bacterium Coxiella burnetii remains a global health threat due to its high infectivity, environmental stability, the debilitating nature and the long duration of treatment. Designing new and potent drugs that target previously unexplored pathways is essential to shorten treatment time and minimise antibiotic resistance. Nicotinamide adenine dinucleotide (NAD) is an essential and ubiquitous cofactor in all living organisms. NadB, an L-aspartate oxidase catalysing the first step of the prokaryotic-specific NAD de novo biosynthetic pathway, is required for C. burnetii growth and replication inside host cells. In this study, in vitro enzyme assays utilising recombinant glutathione S-transferase tagged NadB (GST-NadB) demonstrated inhibition of the L-aspartate oxidase activity of NadB by meso-tartrate. Furthermore, meso-tartrate inhibits intracellular growth and replication of C. burnetii inside host cells in a dose-dependent manner, and has no effect on the viability of mammalian cells. Unexpectedly, meso-tartrate also inhibited growth of C. burnetii in axenic medium, and further reduces replication of the nadB mutant inside host cells, suggesting it is acting more widely than simple inhibition of NadB. Overall, these results suggest that the antibacterial activity of meso-tartrate warrants further study, including investigation of its additional target(s).

2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Shaun Wachter ◽  
Matteo Bonazzi ◽  
Kyle Shifflett ◽  
Abraham S. Moses ◽  
Rahul Raghavan ◽  
...  

ABSTRACT Coxiella burnetii is an obligate intracellular gammaproteobacterium and zoonotic agent of Q fever. We previously identified 15 small noncoding RNAs (sRNAs) of C. burnetii. One of them, CbsR12 (Coxiella burnetii small RNA 12), is highly transcribed during axenic growth and becomes more prominent during infection of cultured mammalian cells. Secondary structure predictions of CbsR12 revealed four putative CsrA-binding sites in stem loops with consensus AGGA/ANGGA motifs. We subsequently determined that CbsR12 binds to recombinant C. burnetii CsrA-2, but not CsrA-1, proteins in vitro. Moreover, through a combination of in vitro and cell culture assays, we identified several in trans mRNA targets of CbsR12. Of these, we determined that CbsR12 binds and upregulates translation of carA transcripts coding for carbamoyl phosphate synthetase A, an enzyme that catalyzes the first step of pyrimidine biosynthesis. In addition, CbsR12 binds and downregulates translation of metK transcripts coding for S-adenosylmethionine synthetase, a component of the methionine cycle. Furthermore, we found that CbsR12 binds to and downregulates the quantity of cvpD transcripts, coding for a type IVB effector protein, in mammalian cell culture. Finally, we found that CbsR12 is necessary for expansion of Coxiella-containing vacuoles and affects growth rates in a dose-dependent manner in the early phase of infecting THP-1 cells. This is the first characterization of a trans-acting sRNA of C. burnetii and the first example of a bacterial sRNA that regulates both CarA and MetK synthesis. CbsR12 is one of only a few identified trans-acting sRNAs that interacts with CsrA. IMPORTANCE Regulation of metabolism and virulence in C. burnetii is not well understood. Here, we show that C. burnetii small RNA 12 (CbsR12) is highly transcribed in the metabolically active large-cell variant compared to the nonreplicative small-cell variant. We show that CbsR12 directly regulates several genes involved in metabolism, along with a type IV effector gene, in trans. In addition, we demonstrate that CbsR12 binds to CsrA-2 in vitro and induces autoaggregation and biofilm formation when transcribed ectopically in Escherichia coli, consistent with other CsrA-sequestering sRNAs. These results implicate CbsR12 in the indirect regulation of a number of genes via CsrA-mediated regulatory activities. The results also support CbsR12 as a crucial regulatory component early on in a mammalian cell infection.


2007 ◽  
Vol 75 (11) ◽  
pp. 5282-5289 ◽  
Author(s):  
Anja Lührmann ◽  
Craig R. Roy

ABSTRACT Coxiella burnetii is an obligate intracellular pathogen and the etiological agent of the human disease Q fever. C. burnetii infects mammalian cells and then remodels the membrane-bound compartment in which it resides into a unique lysosome-derived organelle that supports bacterial multiplication. To gain insight into the mechanisms by which C. burnetii is able to multiply intracellularly, we examined the ability of host cells to respond to signals that normally induce apoptosis. Our data show that mammalian cells infected with C. burnetii are resistant to apoptosis induced by staurosporine and UV light. C. burnetii infection prevented caspase 3/7 activation and limited fragmentation of the host cell nucleus in response to agonists that induce apoptosis. Inhibition of bacterial protein synthesis reduced the antiapoptotic effect that C. burnetii exerted on infected host cells. Inhibition of apoptosis in C. burnetii-infected cells did not correlate with the degradation of proapoptotic BH3-only proteins involved in activation of the intrinsic cell death pathway; however, cytochrome c release from mitochondria was diminished in cells infected with C. burnetii upon induction of apoptosis. These data indicate that C. burnetii can interfere with the intrinsic cell death pathway during infection by producing proteins that either directly or indirectly prevent release of cytochrome c from mitochondria. It is likely that inhibition of apoptosis by C. burnetii represents an important virulence property that allows this obligate intracellular pathogen to maintain host cell viability despite inducing stress that would normally activate the intrinsic death pathway.


1996 ◽  
Vol 40 (11) ◽  
pp. 2455-2458 ◽  
Author(s):  
J Nakajima-Shimada ◽  
Y Hirota ◽  
T Aoki

Trypanosoma cruzi, the causative agent of Chagas' disease, exhibits two different developmental stages in mammals, the amastigote, an intracellular form that proliferates in the cytoplasm of host cells, and the trypomastigote, an extracellular form that circulates in the bloodstream. We have already established an in vitro culture system using mammalian host cells (HeLa) infected with T. cruzi in which the time course of parasite growth is determined quantitatively. We adopted this system for the screening of anti-T. cruzi agents that would ideally prove to be effective against trypanosomes with no toxicity to the host cell. Of the purine analogs tested, allopurinol markedly inhibited the growth of amastigotes in a dose-dependent manner, with no lethal effect on trypomastigotes. 3'-Deoxyinosine and 3'-deoxyadenosine also suppressed T. cruzi growth inside the host cell, with the concentrations causing 50% growth inhibition being 10 and 5 microM, respectively, in contrast to a concentration causing 50% growth inhibition of 3 microM for allopurinol. Among the pyrimidine analogs examined, 3'-azido-3'-deoxythymidine (zidovudine) significantly reduced the growth of the parasite at concentrations as low as 1 microM. The anti-human immunodeficiency virus agents 2',3'-dideoxyinosine and 2',3'-dideoxyadenosine caused a decrease in amastigote growth, while 2',3'-dideoxycytidine and 2',3'-dideoxyuridine had no inhibitory effect. When Swiss 3T3 fibroblasts were used as host cells, allopurinol, 3'-deoxyinosine, 3'-deoxyadenosine, and 3'-azid-3'-deoxythymidine also markedly inhibited T. cruzi proliferation. These results indicate that our culture system is useful as a primary screening method for candidate compounds against T. cruzi on the basis of two criteria, namely, intracellular replication by the parasite and host-cell infection rate.


2010 ◽  
Vol 192 (23) ◽  
pp. 6154-6159 ◽  
Author(s):  
Stacey D. Gilk ◽  
Paul A. Beare ◽  
Robert A. Heinzen

ABSTRACT Coxiella burnetii, the etiological agent of human Q fever, occupies a unique niche inside the host cell, where it replicates in a modified acidic phagolysosome or parasitophorous vacuole (PV). The PV membrane is cholesterol-rich, and inhibition of host cholesterol metabolism negatively impacts PV biogenesis and pathogen replication. The precise source(s) of PV membrane cholesterol is unknown, as is whether the bacterium actively diverts and/or modifies host cell cholesterol or sterol precursors. C. burnetii lacks enzymes for de novo cholesterol biosynthesis; however, the organism encodes a eukaryote-like Δ24 sterol reductase homolog, CBU1206. Absent in other prokaryotes, this enzyme is predicted to reduce sterol double bonds at carbon 24 in the final step of cholesterol or ergosterol biosynthesis. In the present study, we examined the functional activity of CBU1206. Amino acid alignments revealed the greatest sequence identity (51.7%) with a Δ24 sterol reductase from the soil amoeba Naegleria gruberi. CBU1206 activity was examined by expressing the protein in a Saccharomyces cerevisiae erg4 mutant under the control of a galactose-inducible promoter. Erg4 is a yeast Δ24 sterol reductase responsible for the final reduction step in ergosterol synthesis. Like Erg4-green fluorescent protein (GFP), a CBU1206-GFP fusion protein localized to the yeast endoplasmic reticulum. Heterologous expression of CBU1206 rescued S. cerevisiae erg4 sensitivity to growth in the presence of brefeldin A and cycloheximide and resulted in new synthesis of ergosterol. These data indicate CBU1206 is an active sterol reductase and suggest the enzyme may act on host sterols during C. burnetii intracellular growth.


2005 ◽  
Vol 187 (22) ◽  
pp. 7716-7726 ◽  
Author(s):  
Karim Suwwan de Felipe ◽  
Sergey Pampou ◽  
Oliver S. Jovanovic ◽  
Christopher D. Pericone ◽  
Senna F. Ye ◽  
...  

ABSTRACT Intracellular pathogens exploit host cell functions to create a replication niche inside eukaryotic cells. The causative agent of Legionnaires' disease, the γ-proteobacterium Legionella pneumophila, resides and replicates within a modified vacuole of protozoan and mammalian cells. L. pneumophila translocates effector proteins into host cells through the Icm-Dot complex, a specialized type IVB secretion system that is required for intracellular growth. To find out if some effector proteins may have been acquired through interdomain horizontal gene transfer (HGT), we performed a bioinformatic screen that searched for eukaryotic motifs in all open reading frames of the L. pneumophila Philadelphia-1 genome. We found 44 uncharacterized genes with many distinct eukaryotic motifs. Most of these genes contain G+C biases compared to other L. pneumophila genes, supporting the theory that they were acquired through HGT. Furthermore, we found that several of them are expressed and up-regulated in stationary phase in an RpoS-dependent manner. In addition, at least seven of these gene products are translocated into host cells via the Icm-Dot complex, confirming their role in the intracellular environment. Reminiscent of the case with most Icm-Dot substrates, most of the strains containing mutations in these genes grew comparably to the parent strain intracellularly. Our findings suggest that in L. pneumophila, interdomain HGT may have been a major mechanism for the acquisition of determinants of infection.


Author(s):  
Guido Sireci ◽  
Giusto Davide Badami ◽  
Diana Di Liberto ◽  
Valeria Blanda ◽  
Francesca Grippi ◽  
...  

Coxiella burnetii is an obligate intracellular Gram-negative bacterium and the causative agent of a worldwide zoonosis known as Q fever. The pathogen invades monocytes and macrophages, replicating within acidic phagolysosomes and evading host defenses through different immune evasion strategies that are mainly associated with the structure of its lipopolysaccharide. The main transmission routes are aerosols and ingestion of fomites from infected animals. The innate immune system provides the first host defense against the microorganism, and it is crucial to direct the infection towards a self-limiting respiratory disease or the chronic form. This review reports the advances in understanding the mechanisms of innate immunity acting during C. burnetii infection and the strategies that pathogen put in place to infect the host cells and to modify the expression of specific host cell genes in order to subvert cellular processes. The mechanisms through which different cell types with different genetic backgrounds are differently susceptible to C. burnetii intracellular growth are discussed. The subsets of cytokines induced following C. burnetii infection as well as the pathogen influence on an inflammasome-mediated response are also described. Finally, we discuss the use of animal experimental systems for studying the innate immune response against C. burnetii and discovering novel methods for prevention and treatment of disease in humans and livestock.


2019 ◽  
Vol 201 (23) ◽  
Author(s):  
Charles L. Larson ◽  
Paul A. Beare ◽  
Robert A. Heinzen

ABSTRACT Macrophage parasitism by Coxiella burnetii, the cause of human Q fever, requires the translocation of proteins with effector functions directly into the host cell cytosol via a Dot/Icm type 4B secretion system (T4BSS). Secretion by the analogous Legionella pneumophila T4BSS involves signal sequences within the C-terminal and internal domains of effector proteins. The cytoplasmic chaperone pair IcmSW promotes secretion and binds internal sites distinct from signal sequences. In the present study, we investigated requirements of C. burnetii IcmS for host cell parasitism and effector translocation. A C. burnetii icmS deletion mutant (ΔicmS) exhibited impaired replication in Vero epithelial cells, deficient formation of the Coxiella-containing vacuole, and aberrant T4BSS secretion. Three secretion phenotypes were identified from a screen of 50 Dot/Icm substrates: IcmS dependent (secreted by only wild-type bacteria), IcmS independent (secreted by both wild-type and ΔicmS bacteria), or IcmS inhibited (secreted by only ΔicmS bacteria). Secretion was assessed for N-terminal or C-terminal truncated forms of CBU0794 and CBU1525. IcmS-inhibited secretion of CBU1525 required a C-terminal secretion signal whereas IcmS-dependent secretion of CBU0794 was directed by C-terminal and internal signals. Interchange of the C-terminal 50 amino acids of CBU0794 and CBU1525 revealed that sites within the C terminus regulate IcmS dependency. Glutathione S-transferase-tagged IcmSW bound internal sequences of IcmS-dependent and -inhibited substrates. Thus, the growth defect of the C. burnetii ΔicmS strain is associated with a loss of T4BSS chaperone activity that both positively and negatively regulates effector translocation. IMPORTANCE The intracellular pathogen Coxiella burnetii employs a type 4B secretion system (T4BSS) that promotes growth by translocating effectors of eukaryotic pathways into host cells. T4BSS regulation modeled in Legionella pneumophila indicates IcmS facilitates effector translocation. Here, we characterized type 4B secretion by a Coxiella ΔicmS mutant that exhibits intracellular growth defects. T4BSS substrates demonstrated increased, equivalent, or decreased secretion by the ΔicmS mutant relative to wild-type Coxiella. Similar to the Legionella T4BSS, IcmS dependency in Coxiella was determined by C-terminal and/or internal secretion signals. However, IcmS inhibited secretion of some effectors by Coxiella that were previously shown to be translocated by Legionella. Thus, Coxiella has a unique IcmS regulatory mechanism that both positively and negatively regulates T4BSS export.


2009 ◽  
Vol 191 (13) ◽  
pp. 4232-4242 ◽  
Author(s):  
Daniel E. Voth ◽  
Dale Howe ◽  
Paul A. Beare ◽  
Joseph P. Vogel ◽  
Nathan Unsworth ◽  
...  

ABSTRACT Coxiella burnetii is an obligate intracellular bacterium that directs biogenesis of a parasitophorous vacuole (PV) for replication. Effectors of PV maturation are likely translocated into the host cytosol by a type IV secretion system (T4SS) with homology to the Dot/Icm apparatus of Legionella pneumophila. Since secreted bacterial virulence factors often functionally mimic the activities of host proteins, prokaryotic proteins with eukaryotic features are considered candidate T4SS substrates. Genes encoding proteins with eukaryotic-type ankyrin repeat domains (Anks) were identified upon genome sequencing of the C. burnetii Nine Mile reference isolate, which is associated with a case of human acute Q fever. Interestingly, recent genome sequencing of the G and K isolates, derived from human chronic endocarditis patients, and of the Dugway rodent isolate revealed remarkable heterogeneity in the Ank gene family, with the Dugway isolate harboring the largest number of full-length Ank genes. Using L. pneumophila as a surrogate host, we identified 10 Dugway Anks and 1 Ank specific to the G and K endocarditis isolates translocated into the host cytosol in a Dot/Icm-dependent fashion. A 10-amino-acid C-terminal region appeared to be necessary for translocation, with some Anks also requiring the chaperone IcmS for secretion. Ectopically expressed Anks localized to a variety of subcellular regions in mammalian cells, including microtubules, mitochondria, and the PV membrane. Collectively, these data suggest that C. burnetii isolates translocate distinct subsets of the Ank protein family into the host cytosol, where they modulate diverse functions, some of which may be unique to C. burnetii pathotypes.


2006 ◽  
Vol 74 (6) ◽  
pp. 3334-3341 ◽  
Author(s):  
Nandini Dasgupta ◽  
Alix Ashare ◽  
Gary W. Hunninghake ◽  
Timothy L. Yahr

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to intoxicate eukaryotic host cells. Transcription of the T3SS is induced under calcium-limited growth conditions or following intimate contact of P. aeruginosa with host cells. In the present study, we demonstrate that expression of the T3SS is controlled by two distinct regulatory mechanisms and that these mechanisms are differentially activated in a host cell-dependent manner. The first mechanism is dependent upon ExsC, a regulatory protein that couples transcription of the T3SS to the activity of the type III secretion machinery. ExsC is essential for induction of the T3SS under low-calcium-growth conditions and for T3SS-dependent cytotoxicity towards social amoebae, insect cells, and erythrocytes. The second regulatory mechanism functions independently of ExsC and is sufficient to elicit T3SS-dependent cytotoxicity towards certain types of mammalian cells. Although this second pathway (ExsC independent) is sufficient, an exsC mutant demonstrates a lag in the induction of cytotoxicity towards Chinese hamster ovary cells and is attenuated for virulence in a mouse pneumonia model. We propose that the ExsC-dependent pathway is required for full cytotoxicity towards all host cell types tested whereas the ExsC-independent pathway may represent an adaptation that allows P. aeruginosa to increase expression of the T3SS in response to specific types of mammalian cells.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Katelynn R. Brann ◽  
Marissa S. Fullerton ◽  
Daniel E. Voth

ABSTRACT Coxiella burnetii is the causative agent of human Q fever, eliciting symptoms that range from acute fever and fatigue to chronic fatal endocarditis. C. burnetii is a Gram-negative intracellular bacterium that replicates within an acidic lysosome-like parasitophorous vacuole (PV) in human macrophages. During intracellular growth, C. burnetii delivers bacterial proteins directly into the host cytoplasm using a Dot/Icm type IV secretion system (T4SS). Multiple T4SS effectors localize to and/or disrupt the endoplasmic reticulum (ER) and secretory transport, but their role in infection is unknown. During microbial infection, unfolded nascent proteins may exceed the folding capacity of the ER, activating the unfolded protein response (UPR) and restoring the ER to its normal physiological state. A subset of intracellular pathogens manipulates the UPR to promote survival and replication in host cells. In this study, we investigated the impact of C. burnetii infection on activation of the three arms of the UPR. An inhibitor of the UPR antagonized PV expansion in macrophages, indicating this process is needed for bacterial replication niche formation. Protein kinase RNA-like ER kinase (PERK) signaling was activated during infection, leading to increased levels of phosphorylated eukaryotic initiation factor α, which was required for C. burnetii growth. Increased production and nuclear translocation of the transcription factor ATF4 also occurred, which normally drives expression of the proapoptotic C/EBP homologous protein (CHOP). CHOP protein production increased during infection; however, C. burnetii actively prevented CHOP nuclear translocation and downstream apoptosis in a T4SS-dependent manner. The results collectively demonstrate interplay between C. burnetii and specific components of the eIF2α signaling cascade to parasitize human macrophages.


Sign in / Sign up

Export Citation Format

Share Document