The carbon sequestration potential of ‘analog’ forestry in Ecuador: an alternative strategy for reforestation of degraded pastures

Author(s):  
Raúl Armando Ramos Veintimilla ◽  
David MacFarlane ◽  
Lauren Cooper

Abstract ‘Analog’ forestry is a novel silvicultural approach for reforestation of degraded land that seeks to establish trees that are analogous in structure and ecological function to the original climax or subclimax vegetation of the region where they are planted. Analog forestry aims to strengthen rural communities, both socially and economically, with tree plantings of high biodiversity, which provide commercial products and resiliency, while avoiding agrochemicals and fossil fuels. The latter links this strategy to climate change mitigation and adaptation strategies, but there has been little analysis comparing the potential for above- and below-ground carbon storage in analog forests, as compared with more typical reforestation efforts via single-species plantations. We present the results of a study to estimate carbon sequestration levels, above- and below-ground, from an experimental analog forest system and a teak (Tectona grandis L.f.) plantation system, in comparison with a degraded pasture system. The study found that the analog and teak plantation forest systems stored higher quantities of total carbon (178 and 141 t C ha−1, respectively), when compared with a degraded pasture system (124 t C ha−1). However, the teak plantation had decreased soil carbon stocks, relative to the degraded pasture. The analog forest had the best balance of both above- and below-ground carbon stored over the 17-year study period and provided a more diverse array of timber and non-timber forest products when compared with the teak plantation. This suggests that analog forestry could be a viable social–ecological approach to carbon storage and reforestation in the study region and other places with large areas of degraded pasture and a good understanding of the structure and function of the original vegetation.

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 922 ◽  
Author(s):  
Rafaella C. Mayrinck ◽  
Colin P. Laroque ◽  
Beyhan Y. Amichev ◽  
Ken Van Rees

Shelterbelts have been planted around the world for many reasons. Recently, due to increasing awareness of climate change risks, shelterbelt agroforestry systems have received special attention because of the environmental services they provide, including their greenhouse gas (GHG) mitigation potential. This paper aims to discuss shelterbelt history in Canada, and the environmental benefits they provide, focusing on carbon sequestration potential, above- and below-ground. Shelterbelt establishment in Canada dates back to more than a century ago, when their main use was protecting the soil, farm infrastructure and livestock from the elements. As minimal-and no-till systems have become more prevalent among agricultural producers, soil has been less exposed and less vulnerable to wind erosion, so the practice of planting and maintaining shelterbelts has declined in recent decades. In addition, as farm equipment has grown in size to meet the demands of larger landowners, shelterbelts are being removed to increase efficiency and machine maneuverability in the field. This trend of shelterbelt removal prevents shelterbelt’s climate change mitigation potential to be fully achieved. For example, in the last century, shelterbelts have sequestered 4.85 Tg C in Saskatchewan. To increase our understanding of carbon sequestration by shelterbelts, in 2013, the Government of Canada launched the Agricultural Greenhouse Gases Program (AGGP). In five years, 27 million dollars were spent supporting technologies and practices to mitigate GHG release on agricultural land, including understanding shelterbelt carbon sequestration and to encourage planting on farms. All these topics are further explained in this paper as an attempt to inform and promote shelterbelts as a climate change mitigation tool on agricultural lands.


2021 ◽  
Vol 9 (3) ◽  
pp. 389-399
Author(s):  
Yuniawati ◽  
Rossi Margareth Tampubolon

Timber harvesting is an activity in producing wood to supply the lumber industry. However, timber harvesting brought consequences such as decreasing carbon sequestration potential of natural forests. This study aimed to determine the reduction in the potential for carbon sequestration due to timber harvesting in natural forests. Data were collected using non-destructive methods through stand inventory before felling for all tree species, cruising results report, and tree distribution maps. Biomass was calculated using the existing allometric, and carbon stocks were calculated using the Intergovernmental Panel on Climate Change method. The results showed that there were 238 trees (65.29 m3) of stands in the study area (6 ha) based on stand inventory before felling. Potential biomass and carbon storage before trees felling were 16.12 ton ha-1 and 7.58 ton ha-1, respectively. Potential biomass and carbon storage after tree felling were 5.15 ton ha-1 and 2.42 ton ha-1, respectively. Carbon absorption before and after tree felling is 28.37 ton CO2eq ha-1 and 4.44 ton CO2eq ha-1, respectively. Carbon emissions during tree felling was 18.93 ton CO2eq ha-1 (81.00%). The application of environmentally friendly wood harvesting shall be carried out appropriately to minimize a decrease in carbon absorption from timber harvesting.  Keywords: biomass, carbon emission, timber harvesting


Author(s):  
Tania Alvis-Ccoropuna ◽  
◽  
José Francisco Villasante-Benavides ◽  
Gregory Anthony Pauca-Tanco ◽  
Johana del Pilar Quispe-Turpo ◽  
...  

High Andean wetlands are important ecosystems due to their ecosystem services. Carbon storage is a result of the low decomposition rate due to flooded soils and low temperatures. Consequently, this study estimated the carbon content stored in the high Andean wetland of Chalhuanca and calculated the economic value of this service. For this purpose, 30 samples were taken at random, establishing three carbon pools: aboveground biomass (leaves and stems), belowground biomass (roots), and organic soil. The samples were obtained with an auger-type device; each sample was dried at 65°C for at least 24 hours and the carbon content was determined using the Walkey-Black method and calculations and statistical tests were performed. The total carbon stored in relation to the area of the wetland was approximately 795,415.65 tons of CO2. The fraction of carbon per sample is higher in aerial biomass (49%), followed by organic soil (43.1%) and below ground biomass. On the other hand, the amount of carbon stored differs significantly between reservoirs, since organic soil stores the highest amount with 218.3 TC/ha (90%), followed by below-ground biomass (roots) with 19.7 TC/ha (8%), and above-ground biomass (leaves and stems) with 4.8 TC/ha (2%). Finally, the ecosystem service of carbon storage amounts to a cost of 6462.18 USD/ha, 5703132.34 USD in sum.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6340
Author(s):  
James F. Fox ◽  
John Elliott Campbell ◽  
Peter M. Acton

Future carbon management during energy production will rely on carbon capture and sequestration technology and carbon sequestration methods for offsetting non-capturable losses. The present study quantifies carbon sequestration via reforestation using measurements and modeling for recent and legacy surface coal mining grasslands that are re-restored through tree planting. This paper focuses on a case study of legacy coal mining sites in the southern Appalachia the United States. This five million-hectare region has a surface mining footprint of approximately 12% of the land area, and the reclamation method was primarily grassland. The results of the soil carbon sequestration rates for restored forest soils approach 2.0 MgC ha−1 y−1 initially and average 1.0 MgC ha−1 y−1 for the first fifty years after reclamation. Plant, coarse root and litter carbon sequestration rates were 2.8 MgC ha−1 y−1 with plant carbon estimated to equilibrate to 110 MgC ha−1 after forty years. Plant, root and litter carbon stocks are projected to equilibrate at an order of magnitude greater carbon storage than the existing conditions, highlighting the net carbon gain. Reforestation of legacy mine sites shows carbon sequestration potential several orders of magnitude greater than typical land sequestration strategies for carbon offsets. Projections of future scenarios provide results that show the study region could be carbon neutral or a small sink if widespread reforesting during reclamation was implemented, which is contrary to the business-as-usual projections that result in a large amount of carbon being released to the atmosphere in this region.


1970 ◽  
Vol 18 (2) ◽  
pp. 3-9 ◽  
Author(s):  
S Ranabhat ◽  
KD Awasthi ◽  
R Malla

This study was carried out to analyze the carbon content in different parts of Alnus nepalensis, and to assess the effect of aspect and altitude in the carbon storage in Alnus nepalensis as well as to quantify the total carbon sequestration (stock) in Alnus nepalensis forest in the mid-hills of Kaski District. The inventory for estimating above and below ground biomass of forest was carried out using stratified random sampling technique. The carbon content in different parts of Alnus nepalensis was quantified using combustion method in the laboratory. For determining the soil carbon content, six soil profiles from each aspect were excavated and soil samples were taken from soil profile up to 1 m depth for deep soil and up to bedrock for shallow soils at the interval of 20 cm. Mean carbon content in stem, branches, leaves and bark of Alnus nepalensis were found to be 40.52%, 33%, 9.56% and 16.4%, respectively. Total biomass carbon sequestered in northern aspect was 30.20 t/ha while for southern aspect it was 39.00 t/ha. In both the aspects higher carbon sequestration was observed at an elevation range of 1200-1300m i.e. 34.8 t/ha and 45.6 t/ha in northern and southern aspects, respectively. Soil carbon sequestration in northern and southern aspects was found to be 113.4 t/ha and 169.30 t/ ha, respectively. The total carbon sequestration potential of Alnus nepalensis forest was estimated to be 186.05 t/ha. Key words: Alnus nepalensis, altitude, aspect, carbon sequestration, mid hills   doi: 10.3126/banko.v18i2.2167 Banko Janakari, Vol. 18, No. 2, 3-9


2020 ◽  
Author(s):  
Jiaqian Wang ◽  
David Werner ◽  
David Manning

<p>Higher Education in England targets to reduce by an average 34% carbon dioxide emissions until 2020 based on the level in 1990. This project not only requires various departments of universities to improve their energy system by utilizing low carbon techniques but also challenges the academics and researchers to examine multiple approaches to sequester carbon as much as possible in the limited area. Land owned by universities contains a lot of carbon. The group SUCCESS (Sustainable Urban Carbon Capture Engineering Soils for Climate Change) in Newcastle University has observed that 10 ha of urban soil near Newcastle Science Central removed almost 80 T CO<sub>2</sub> per hectare every month.</p><p>The project has set up two lysimeters in June 2018 to investigate the addition of wheat straw pellets (WP) versus biochar (BC) produced from this biomas as carbon sequestration strategies. Sensors were set up at different depths to collect information about the internal soil environment. The wheat straw biochar has 69.04% C content, and it was applied to the soil at a rate of 2% (w/w); the application rate of wheat straw pellets is based on the carbon weight of wheat straw biochar. Therefore, the amount of carbon added as wheat straw pellets, or as wheat straw biochar was 29.8±0.57 Kg in each lysimeter.</p><p>Cumulatively, 704.23±0.14 g and 697.17±0.1 g of total carbon were leached from the lysimeter BC and lysimeter WP, respectively, till the end of November 2019. Meanwhile, the total amount of CO2 carbon released via respiration of soil carbon was 9.65±0.35 Kg and 6.17±0.19 Kg for lysimeter BC and lysimeter WP, respectively, from August 2018 to November 2019. Moreover, the carbon mass fixed, measure as dried grass biomass in the two systems was 1.57 Kg for lysimeter BC and 1.75 Kg for lysimeter WP. The net C mass stored according to the mass balance for the lysimeter BC is 21.02 ±0.67 Kg from the topsoil during the experiment period, and 24.68±0.6 Kg in lysimeter WP. Whereas, by measurement, the amount of carbon in the topsoil has shown an increase of 37.09±13.58 Kg and 19.51±3.36 Kg in lysimeter BC and lysimeter WP, respectively. Currently, the data obtained in this study indicate that the mixture of biochar and biomass amendment promotes carbon sequestration potential in the urban soil environment and further application details on land owned by the university can be explored.</p>


2020 ◽  
Author(s):  
Jiaqian Wang ◽  
David Werner ◽  
David Manning

<p>Reducing carbon footprint has increasingly become an important topic regarding the management of industries and universities from different fields. Newcastle University promised to achieve the goal of net-zero carbon dioxide emissions by 2040, and the first process from this ambitious target is to produce a 43% reduction by July 2020, against a 2005/06 baseline. According to the report from Carbon Management Plan 2019 of Newcastle University, there are still 1,720 tons of carbon that should be reduced or offset during this year.</p><p>Two farms were investigated in this project: Nafferton Farm (NF) and Cockle Park Farm (CP) . Soil sampling was conducted within each field at three depth increment (0-30 cm, 30-60 cm and 30-90 cm) separately. Except for soil analysis, this study also chooses some plots in the woodlands around two farms to estimate the carbon storage by various vegetation species, and these two sections will offer comprehensive information about the quality and quantity of carbon in two farms.</p><p>On average, the percentage of total carbon (TC) from all soil profiles was higher under woodland than crop fields in CP. Because the hectare of crop fields is greater than woodland, the sum of total carbon in individual soil layers from the areas is comparatively larger in crop lands, where C stock is 14,122 tons, 6,017 tons, 5,437 tons for the 0-30 cm layers, 30-60 cm layers and 60-90 cm layers, respectively. Meanwhile, the data is 1, 905 tons, 822 tons, and 648 tons for three soil depth layers in the woodland of CP. In Nafferton Farm, the value of TC from the corresponding soil layers is 17,841 tons, 6,844 tons, 6,177 tons separately.</p><p>The results attained so far represent that TC and soil organic carbon (SOC)  in each farm are all statistically significantly different (p< 0.001) with respect to soil depth, but differences were not significant with respect to crop and tree species grown in a single area. Moreover, TC in surface soil of NF is statistically higher (p< 0.01) than that in CP. In Cockle Park Farm, C contents from woodland were considerably higher than those in crop fields (p< 0.001) and the difference of TC and SOC at individual depth layer cannot be ignored. Gross carbon sequestration of plants in woodland is 150.64 tons’ annually, which was calculated by i-Tree Ecosystem Analysis. Simultaneously, the total carbon of trees, including leaf biomass and tree trunks, is in a range of 3,198- 4,096 tons in the woodland of CP. Consequently, the current quality of carbon in topsoil from the whole fields of two farms and the woodland of CP is 35,610 tons which is over four times as high as the estimated carbon emission produced by University in 2019/20 ( 8, 181 tons).</p><p>Overall, it is recommended that the management team of university should attach importance to the operation of two farms. The expectation of mitigating 1,720 ton’s carbon in the short term can be fulfilled if the management department considers converting 58.79 ha crop fields to mixed-species woodland.</p>


2016 ◽  
Vol 92 (03) ◽  
pp. 316-321 ◽  
Author(s):  
Guopeng Chen ◽  
Huitao Shen ◽  
Jiansheng Cao ◽  
Wanjun Zhang

Selection of tree species is an important management decision for increasing carbon storage in regional planting programs in China. This study quantifies above and belowground carbon storage by several species in the Desertification Combating Program around Beijing and Tianjin (DCBT). Results show that the total carbon storage of the Pinus davidiana plantation was significantly higher than that of Pinus sylvestris var. mongolica but not significantly differ from plantations of Pinus tabulaeformis and Larix gmelinii var. principis-rupprechtii. Most of the carbon was in the aboveground biomass. These results suggest that tree species have substantial influences on carbon storage, and that species should be considered in improving carbon sequestration potential for afforestation/reforestation projects.


1970 ◽  
Vol 3 ◽  
pp. 20-29
Author(s):  
Bishnu P Shrestha

This study was carried out to quantify total carbon sequestration in two broad leaved forests (Shorea and Schima-Castanopsis forests) of Palpa district. The inventory for estimating above and below ground biomass of forest was carried out using stratified random sampling. Biomass was calculated using allometric models. Soil samples were taken from soil profile upto 1 m depth for deep soil and up to bed rock for shallow soils at the interval of 20 cm. Walkey and Black method were applied for measuring soil organic carbon. Total biomass carbon in Shorea and Schima-Castanopsis forest was found 101.66 and 44.43 t ha-1 respectively. Soil carbon sequestration in Schima-Castanopsis and Shorea forest was found 130.76 and 126.07 t ha-1 respectively. Total carbon sequestration in Shorea forest was found 1.29 times higher than Schima-Castanopsis forest. The study found that forest types play an important role on total carbon sequestration. Key Words: Carbon sequestration, Shorea forest, Schima-Castanopsis forest, Biomass carbon, Soil carbon DOI: 10.3126/init.v3i0.2424 The Initiation Vol.3 2009 p.20-29


Sign in / Sign up

Export Citation Format

Share Document