scholarly journals Can Green Algal Plastid Genome Size Be Explained by DNA Repair Mechanisms?

2020 ◽  
Vol 12 (2) ◽  
pp. 3797-3802 ◽  
Author(s):  
David Roy Smith

Abstract A major finding in organelle biology over the past decade is that land plant mitochondrial genomes, which are the largest among eukaryotes, can have a “Jekyll and Hyde” mutational pattern: low for synonymous sites, high for intergenic ones. This has led to the theory that double-strand breaks (DSBs) in the intergenic DNA of plant mitogenomes are repaired by inaccurate mechanisms, such as break-induced replication, which can result in large insertions and, thus, could explain why these genomes are so prone to expansion. But how universal is this theory? Can it apply to other giant organelle DNAs, such as the massive plastid DNAs (ptDNAs) of chlamydomonadalean green algae? Indeed, it can. Analysis of the expanded plastomes from two distinct isolates of the unicellular chlamydomonadalean Chlorosarcinopsis eremi uncovered exceptionally low rates of synonymous substitution in the coding regions but high substitution rates, including frequent indels, in the noncoding ptDNA, mirroring the trend from land plant mitogenomes. Remarkably, nearly all of the substitutions and indels identified in the noncoding ptDNA of C. eremi occur adjacent to or within short inverted palindromic repeats, suggesting that these elements are mutational hotspots. Building upon earlier studies, I propose that these palindromic repeats are predisposed to DSBs and that error-prone repair of these breaks is contributing to genomic expansion. Short palindromic repeats are a common theme among bloated plastomes, including the largest one on record, meaning that these data could have wide-reaching implications for our understanding of ptDNA expansion.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.



2022 ◽  
Vol 13 (1) ◽  
Author(s):  
John K. L. Wong ◽  
Christian Aichmüller ◽  
Markus Schulze ◽  
Mario Hlevnjak ◽  
Shaymaa Elgaafary ◽  
...  

AbstractCancer driving mutations are difficult to identify especially in the non-coding part of the genome. Here, we present sigDriver, an algorithm dedicated to call driver mutations. Using 3813 whole-genome sequenced tumors from International Cancer Genome Consortium, The Cancer Genome Atlas Program, and a childhood pan-cancer cohort, we employ mutational signatures based on single-base substitution in the context of tri- and penta-nucleotide motifs for hotspot discovery. Knowledge-based annotations on mutational hotspots reveal enrichment in coding regions and regulatory elements for 6 mutational signatures, including APOBEC and somatic hypermutation signatures. APOBEC activity is associated with 32 hotspots of which 11 are known and 11 are putative regulatory drivers. Somatic single nucleotide variants clusters detected at hypermutation-associated hotspots are distinct from translocation or gene amplifications. Patients carrying APOBEC induced PIK3CA driver mutations show lower occurrence of signature SBS39. In summary, sigDriver uncovers mutational processes associated with known and putative tumor drivers and hotspots particularly in the non-coding regions of the genome.



2021 ◽  
Author(s):  
Anis Meschichi ◽  
Adrien Sicard ◽  
Frédéric Pontvianne ◽  
Svenja Reeck ◽  
Stefanie Rosa

Double-strand breaks (DSBs) are a particularly deleterious type of DNA damage potentially leading to translocations and genome instability. Homologous recombination (HR) is a conservative repair pathway in which intact homologous sequences are used as a template for repair. How damaged DNA molecules search for homologous sequences in the crowded space of the cell nucleus is, however, still poorly understood, especially in plants. Here, we measured global chromosome and DSB site mobility, in Arabidopsis thaliana, by tracking the motion of specific loci using the lacO/LacI tagging system and two GFP-tagged HR regulators, RAD51 and RAD54. We observed an increase in chromatin mobility upon the induction of DNA damage, specifically at the S/G2 phases of the cell cycle. Importantly, this increase in mobility was lost on sog1-1 mutant, a central transcription factor of the DNA damage response (DDR), indicating that repair mechanisms actively regulate chromatin mobility upon DNA damage. Interestingly, we observed that DSB sites show remarkably high mobility levels at the early HR stage. Subsequently, a drastic decrease of DSB mobility is observed, which seems to be associated to the relocation of DSBs to the nucleus periphery. Altogether, our data suggest that changes in chromatin mobility are triggered in response to DNA damage, and that this may act as a mechanism to enhance the physical search within the nuclear space to locate a homologous template during homology-directed DNA repair.



Author(s):  
Natalja Beying ◽  
◽  
Carla Schmidt ◽  
Holger Puchta ◽  
◽  
...  

In genome engineering, after targeted induction of double strand breaks (DSBs) researchers take advantage of the organisms’ own repair mechanisms to induce different kinds of sequence changes into the genome. Therefore, understanding of the underlying mechanisms is essential. This chapter will review in detail the two main pathways of DSB repair in plant cells, non-homologous end joining (NHEJ) and homologous recombination (HR) and sum up what we have learned over the last decades about them. We summarize the different models that have been proposed and set these into relation with the molecular outcomes of different classes of DSB repair. Moreover, we describe the factors that have been identified to be involved in these pathways. Applying this knowledge of DSB repair should help us to improve the efficiency of different types of genome engineering in plants.



Open Biology ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 150018 ◽  
Author(s):  
Jessica S. Brown ◽  
Stephen P. Jackson

Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.



2014 ◽  
Vol 462 (1) ◽  
pp. 15-24 ◽  
Author(s):  
David A. Wright ◽  
Ting Li ◽  
Bing Yang ◽  
Martin H. Spalding

Genome editing is the practice of making predetermined and precise changes to a genome by controlling the location of DNA DSBs (double-strand breaks) and manipulating the cell's repair mechanisms. This technology results from harnessing natural processes that have taken decades and multiple lines of inquiry to understand. Through many false starts and iterative technology advances, the goal of genome editing is just now falling under the control of human hands as a routine and broadly applicable method. The present review attempts to define the technique and capture the discovery process while following its evolution from meganucleases and zinc finger nucleases to the current state of the art: TALEN (transcription-activator-like effector nuclease) technology. We also discuss factors that influence success, technical challenges and future prospects of this quickly evolving area of study and application.



2008 ◽  
Vol 82 (10) ◽  
pp. 4938-4945 ◽  
Author(s):  
Sergey Kryazhimskiy ◽  
Georgii A. Bazykin ◽  
Jonathan Dushoff

ABSTRACT Influenza A virus is one of the best-studied viruses and a model organism for the study of molecular evolution; in particular, much research has focused on detecting natural selection on influenza virus proteins. Here, we study the dynamics of the synonymous and nonsynonymous nucleotide composition of influenza A virus genes. In several genes, the nucleotide frequencies at synonymous positions drift away from the equilibria predicted from the synonymous substitution matrices. We investigate possible reasons for this unexpected behavior by fitting several regression models. Relaxation toward a mutation-selection equilibrium following a host jump fails to explain the dynamics of the synonymous nucleotide composition, even if we allow for slow temporal changes in the substitution matrix. Instead, we find that deep internal branches of the phylogeny show distinct patterns of nucleotide substitution and that these branches strongly influence the dynamics of nucleotide composition, suggesting that the observed trends are at least in part a result of natural selection acting on synonymous sites. Moreover, we find that the dynamics of the nucleotide composition at synonymous and nonsynonymous sites are highly correlated, providing evidence that even nonsynonymous sites can be influenced by selection pressure for nucleotide composition.



2020 ◽  
Author(s):  
S Cohen ◽  
A Guenolé ◽  
A Marnef ◽  
T Clouaire ◽  
N Puget ◽  
...  

AbstractTranscriptionally active loci are particularly prone to breakage and mounting evidence suggest that DNA Double-Strand Breaks arising in genes are handled by a dedicated repair pathway, Transcription-Coupled DSB Repair (TC-DSBR), that entails R-loops accumulation and dissolution. Here, we uncovered a critical function of the Bloom RecQ DNA helicase (BLM) in TC-DSBR in human cells. BLM is recruited in a transcription dependent-manner at DSBs where it fosters resection, RAD51 binding and accurate Homologous Recombination repair. However, in a R-loop dissolution-deficient background BLM switches from promoting Homologous Recombination to promoting Break-Induced Replication (BIR), which strongly impairs cell viability. Altogether our work unveils a role for BLM in BIR at DSBs in active chromatin, and highlights the toxic potential of RNA:DNA hybrids that accumulate at these transcription-associated DSBs.



2018 ◽  
Author(s):  
George E. Ronson ◽  
Ann Liza Piberger ◽  
Martin R. Higgs ◽  
Anna L. Olsen ◽  
Grant S. Stewart ◽  
...  

AbstractPARP1 regulates the repair of DNA single strand breaks (SSBs) generated directly, or during base excision repair (BER). However, the role of PARP2 in these and other repair mechanisms is unknown. Here, we report a requirement for PARP2 in stabilising replication forks that encounter BER intermediates through Fbh1-dependent regulation of Rad51. Whilst PARP2 is dispensable for tolerance of cells to SSBs or homologous recombination dysfunction, it is redundant with PARP1 in BER. Therefore, combined disruption of PARP1 and PARP2 leads to defective BER, resulting in elevated levels of replication associated DNA damage due to an inability to stabilise Rad51 at damaged replication forks and prevent uncontrolled DNA resection. Together, our results demonstrate how PARP1 and PARP2 regulate two independent, but intrinsically linked aspects of DNA base damage tolerance by promoting BER directly, and through stabilising replication forks that encounter BER intermediates.



Sign in / Sign up

Export Citation Format

Share Document