scholarly journals THE ABSENCE OF SOMATIC EFFECTS OF P-M HYBRID DYSGENESIS IN DROSOPHILA MELANOGASTER

Genetics ◽  
1986 ◽  
Vol 113 (4) ◽  
pp. 897-918
Author(s):  
M Catharine McElwain

ABSTRACT The wings and abdomens of dysgenic and nondysgenic control flies were scored for the presence of clones of cells mutant for first and third chromosome markers. These exceptional clones can arise from mitotic recombination, de novo mutation or deletion, and P-M hybrid dysgenesis has been shown to increase the frequency of parallel processes occurring in germ-line cells. Particular attention was given to careful genetic and molecular characterization of all stocks and to providing adequate and appropriate controls so that even very small increases in somatic clone frequency due to P-M hybrid dysgenesis would be detected. No difference was found in the frequency, size distribution or anatomical distribution of mutant somatic clones correlated to hybrid dysgenesis, confirming previous indications. The potential adaptive significance of a germ-line restriction of P-M hybrid dysgenesis is discussed.

Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1239-1253
Author(s):  
Allyson F O'Donnell ◽  
Stanley Tiong ◽  
David Nash ◽  
Denise V Clark

Abstract Steps 6 and 7 of de novo purine synthesis are performed by 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-[(N-succinylamino)carbonyl]-5-aminoimidazole ribonucleotide synthetase (SAICARs), respectively. In vertebrates, a single gene encodes AIRc-SAICARs with domains homologous to Escherichia coli PurE and PurC. We have isolated an AIRc-SAICARs cDNA from Drosophila melanogaster via functional complementation with an E. coli purC purine auxotroph. This cDNA encodes AIRc yet is unable to complement an E. coli purE mutant, suggesting functional differences between Drosophila and E. coli AIRc. In vertebrates, the AIRc-SAICARs gene shares a promoter region with the gene encoding phosphoribosylamidotransferase, which performs the first step in de novo purine synthesis. In Drosophila, the AIRc-SAICARs gene maps to section 11B4-14 of the X chromosome, while the phosphoribosylamidotransferase gene (Prat) maps to chromosome 3; thus, the close linkage of these two genes is not conserved in flies. Three EMS-induced X-linked adenine auxotrophic mutations, ade41, ade51, and ade52, were isolated. Two gammaradiation-induced (ade53 and ade54) and three hybrid dysgenesis-induced (ade55, ade56, and ade58) alleles were also isolated. Characterization of the auxotrophy and the finding that the hybrid dysgenesis-induced mutations all harbor P transposon sequences within the AIRc-SAICARs gene show that ade5 encodes AIRc-SAICARs.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Armin Schmidt ◽  
Gioacchino Palumbo ◽  
Maria P Bozzetti ◽  
Patrizia Tritto ◽  
Sergio Pimpinelli ◽  
...  

Abstract The sting mutation, caused by a P element inserted into polytene region 32D, was isolated by a screen for male sterile insertions in Drosophila melanogaster. This sterility is correlated with the presence of crystals in spermatocytes and spermatids that are structurally indistinguishable from those produced in males carrying a deficiency of the Y-linked crystal (cry) locus. In addition, their morphology is needle-like in Ste+ flies and star-shaped in Ste flies, once again as observed in cry– males. The sti mutation leads to meiotic drive of the sex chromosomes, and the strength of the phenomenon is correlated with the copy number of the repetitive Ste locus. The same correlation is also true for the penetrance of the male sterile mutation. A presumptive sti null allele results in male sterility and lethal maternal effect. The gene was cloned and shown to code for a putative protein that is 866 amino acids long. A C-terminal domain of 82 amino acids is identified that is well conserved in proteins from different organisms. The gene is expressed only in the germline of both sexes. The interaction of sting with the Ste locus can also be demonstrated at the molecular level. While an unprocessed 8-kb Ste primary transcript is expressed in wild-type males, in X/Y homozygous sti males, as in X/Y cry– males, a 0.7-kb mRNA is produced.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10538-10538
Author(s):  
Carlos Christian Vera Recio ◽  
Jessica Corredor ◽  
Elissa Dodd-Eaton ◽  
Angelica M. Gutierrez-Barrera ◽  
Najat C. Daw ◽  
...  

10538 Background: Li-Fraumeni syndrome (LFS) is an inherited cancer syndrome mainly caused by a deleterious mutation in TP53. An estimated 48% of LFS patients present due to a deleterious de novo mutation (DNM) in TP53. The knowledge of DNM status, DNM or familial mutation (FM), of an LFS patient requires genetic testing of both parents which is often inaccessible, making de novo LFS patients an understudied population. Famdenovo.TP53 is a Mendelian Risk prediction model used to predict DNM status of TP53 mutation carriers based on the cancer-family history and several input genetic parameters, including disease-gene penetrance. The good predictive performance of Famdenovo.TP53 was demonstrated using data collected from four historical US cohorts. We hypothesize that by incorporating penetrance estimates that are specific for different types of cancers diagnosed in family members, we can develop a model with further improved calibration, accuracy and prediction. Methods: We present Famdenovo.CS, which uses cancer-specific penetrance estimates that were derived previously using a Bayesian semi-parametric competing risk model, to calculate the DNM probability. We use our model to analyze 101 families recently collected from the Clinical Cancer Genetic program at MD Anderson Cancer Center (CCG-TP53) that includes 20 families with known DNM status and 81 families with unknown DNM status. We used the concordance index (AUC), observed:expected ratios (OE) and Brier score (BS) to measure our model’s discrimination, calibration and accuracy, respectively. We estimate the proportion of probands that present a DNM and compare DNM to FM carriers in several areas including: cancer types diagnosed, age at diagnosis, number of primary cancers diagnosed, sex, amino acid change caused by mutation in TP53. Results: Famdenovo.CS showed equally good discrimination and calibration performance to Famdenovo.TP53, while improving the overall accuracy, demonstrated by a decrease in the Brier score of -0.09 (95% CI: [-0.02, -0.19]). Of the 101 probands in the CCG-TP53 cohort, we predict 39 to be DNMs and 62 to be FMs. The cancer types and ages of diagnosis observed in FMs and DNMs are similarly distributed. Conclusions: Famdenovo.CS shows improved model accuracy in the CCG cohort. DNMs in TP53 are a prevalent cause of LFS and we did not find differences in the clinical characteristics of DNM and FM carriers. Our model allows for a systematic identification and characterization of TP53 DNM carriers.


2000 ◽  
Vol 20 (11) ◽  
pp. 4128-4134 ◽  
Author(s):  
Mikhail A. Nikiforov ◽  
Martin A. Gorovsky ◽  
C. David Allis

ABSTRACT Conversion of the germ line micronuclear genome into the genome of a somatic macronucleus in Tetrahymena thermophila requires several DNA rearrangement processes. These include (i) excision and subsequent elimination of several thousand internal eliminated sequences (IESs) scattered throughout the micronuclear genome and (ii) breakage of the micronuclear chromosomes into hundreds of DNA fragments, followed by de novo telomere addition to their ends. Chromosome breakage sequences (Cbs) that determine the sites of breakage and short regions of DNA adjacent to them are also eliminated. Both processes occur concomitantly in the developing macronucleus. Two stage-specific protein factors involved in germ line DNA elimination have been described previously. Pdd1p and Pdd2p (for programmed DNA degradation) physically associate with internal eliminated sequences in transient electron-dense structures in the developing macronucleus. Here, we report the purification, sequence analysis, and characterization of Pdd3p, a novel developmentally regulated, chromodomain-containing polypeptide. Pdd3p colocalizes with Pdd1p in the peripheral regions of DNA elimination structures, but is also found more internally. DNA cross-linked and immunoprecipitated with Pdd1p- or Pdd3p-specific antibodies is enriched in IESs, but not Cbs, suggesting that different protein factors are involved in elimination of these two groups of sequences.


Genetics ◽  
1986 ◽  
Vol 112 (4) ◽  
pp. 755-767
Author(s):  
S H Clark ◽  
M McCarron ◽  
C Love ◽  
A Chovnick

ABSTRACT DNA extracts of several rosy-mutation-bearing strains were associated with large insertions and deletions in a defined region of the molecular map believed to include the rosy locus DNA. Large-scale, intragenic mapping experiments were carried out that localized these mutations within the boundaries of the previously defined rosy locus structural element. Molecular characterization of the wild-type recombinants provides conclusive evidence that the rosy locus DNA is localized to the DNA segment marked by these lesions.—One of the mutations, ry  2101, arose from a P-M hybrid dysgenesis experiment and is associated with a copia insertion. Experiments are described which suggest that copia mobilizes in response to P-M hybrid dysgenesis.—Relevance of the data to recombination in higher organisms is considered.


1997 ◽  
Vol 69 (3) ◽  
pp. 197-208 ◽  
Author(s):  
ERIC BONNIVARD ◽  
DOMINIQUE HIGUET ◽  
CLAUDE BAZIN

Until now, with regard to the hobo system of hybrid dysgenesis, natural populations of Drosophila melanogaster have been investigated using only two criteria: at the molecular level, the presence or absence of XhoI fragments 2·6 kb long or smaller; and/or at the genetic level, the ability to induce gonadal dysgenesis sterility in crosses A (females of an E reference strain crossed with males under test) and A* (females under test crossed with males of an H reference strain). Recently, analyses of laboratory strains using these criteria as well as the mobilization of two reporter genes, the male recombination and the number of ‘TPE’ repeats in the S region, revealed a lack of correlation between the different dysgenic parameters themselves, and also between these parameters and the molecular characteristics of the strains. Thirteen current strains derived from world populations were therefore investigated with regard to all these dysgenic traits, to determine discriminating criteria providing a robust method of classifying natural populations and deducing the dynamics of hobo elements in these populations. We show, as in laboratory strains, a lack of correlation between the parameters studied. Therefore, the significance of each of them as well as the nature of hobo hybrid dysgenesis are discussed, to propose an analysis method of the hobo system applicable to natural populations. According to the geographical distribution of hobo activities in world populations and to the variable polymorphism of the number of ‘TPE’ repeats, we propose a new scenario for the invasion of D. melanogaster by hobo elements.


Genetics ◽  
1990 ◽  
Vol 124 (3) ◽  
pp. 663-676 ◽  
Author(s):  
M J Simmons ◽  
J D Raymond ◽  
K E Rasmusson ◽  
L M Miller ◽  
C F McLarnon ◽  
...  

Abstract Inbred lines derived from a strain called Sexi were analyzed for their abilities to repress P element-mediated gonadal dysgenesis. One line had high repression ability, four had intermediate ability and two had very low ability. The four intermediate lines also exhibited considerable within-line variation for this trait; furthermore, in at least two cases, this variation could not be attributed to recurring P element movement. Repression of gonadal dysgenesis in the hybrid offspring of all seven lines was due primarily to a maternal effect; there was no evidence for repression arising de novo in the hybrids themselves. In one of the lines, repression ability was inherited maternally, indicating the involvement of cytoplasmic factors. In three other lines, repression ability appeared to be determined by partially dominant or additive chromosomal factors; however, there was also evidence for a maternal effect that reduced the expression of these factors in at least two of the lines. In another line, repression ability seemed to be due to recessive chromosomal factors. All seven lines possessed numerous copies of a particular P element, called KP, which has been hypothesized to produce a polypeptide repressor of gonadal dysgenesis. This hypothesis, however, does not explain why the inbred Sexi lines varied so much in their repression abilities. It is suggested that some of this variation may be due to differences in the chromosomal position of the KP elements, or that other nonautonomous P elements are involved in the repression of hybrid dysgenesis in these lines.


1987 ◽  
Vol 50 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Gail M. Simmons

SummaryTwelve isogenic X chromosome lines from a single natural population of Drosophila melanogaster were tested for their potential to induce gonadal dysgenesis and singed-weak mutability in P-M hybrid dysgenesis. The correlation between sterility and mutability was significantly positive for Cross A, confirming the results reported by Engels (1984) and Kocur, Drier & Simmons (1986). In Cross A* cytotype tests, however, two of the lines gave strikingly different results when measured by the gonadal dysgenesis test as compared to the singed-weak test. Positive correlations between traits within a given line were generally not observed. The results suggest that the relationship between gonadal dysgenesis production and the mobilization of P elements in singed-weak mutability is more complicated than that proposed by Engels (1984). The two phenomena may be separable under certain conditions. Neither test can be taken as an adequate characterization of the hybrid dysgenesis ‘profile’ of a line of flies.


1995 ◽  
Vol 65 (3) ◽  
pp. 167-174 ◽  
Author(s):  
Marie-Christine Chaboissier ◽  
Françoise Lemeunier ◽  
Alain Bucheton

SummaryThe I factor is a LINE-like transposable element responsible for the I-R system of hybrid dysgenesis in Drosophila melanogaster. Inducer strains of this species contain several I factors whereas reactive strains do not. I factors are stable in inducer strains, but transpose at high frequency in the germ-line of females, known as SF females, produced by crossing reactive females and inducer males. Various abnormalities occur in SF females, most of which result from this high rate of transposition. We report here that recombination is increased in the germ-line of these females. This is a new characteristic of the I-R system of hybrid dysgenesis that might also be associated with transposition of the I factor.


1979 ◽  
Vol 33 (2) ◽  
pp. 137-146 ◽  
Author(s):  
William R. Engels

SUMMARYMale sterility, male recombination, and transmission ratio distortion – all examples of a syndrome known as hybrid dysgenesis in Drosophila melanogaster – were found to involve chromosome–cytoplasm interactions. The latter two have temperature optima near 25° and involve pre-meiotic events. In addition, sex ratio distortion, and induction of certain translocations of the X and Y chromosomes (but not the autosomes) were found to be part of hybrid dysgenesis. Both are caused by chromosome–cytoplasm interactions with pre-meiotic events playing a crucial role. The results agree with previous data on female sterility in hybrid dysgenesis, which also has cytoplasmic components and premeiotic origins.


Sign in / Sign up

Export Citation Format

Share Document