scholarly journals Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence.

Genetics ◽  
1991 ◽  
Vol 127 (3) ◽  
pp. 565-582 ◽  
Author(s):  
M Kreitman ◽  
R R Hudson

Abstract The DNA sequences of 11 Drosophila melanogaster lines are compared across three contiguous regions, the Adh and Adh-dup loci and a noncoding 5' flanking region of Adh. Ninety-eight of approximately 4750 sites are segregating in the sample, 36 in the 5' flanking region, 38 in Adh and 24 in Adh-dup. Several methods are presented to test whether the patterns and levels of polymorphism are consistent with neutral molecular evolution. The analysis of within- and between-species polymorphism indicates that the region is evolving in a nonneutral and complex fashion. A graphical analysis of the data provides support for a hypothesized balanced polymorphism at or near position 1490, site of the amino acid replacement difference between Adhf and Adhs. The Adh-dup locus is less polymorphic than Adh and all 24 of its polymorphisms occur at low frequency--suggestive of a recent selective substitution in the Adh-dup region. Adhs alleles form two distinct evolutionary lineages that differ one from another at a total of nineteen sites in the Adh and Adh-dup loci. The polymorphisms are in complete linkage disequilibrium. A recombination experiment failed to find evidence for recombination suppression between the two allelic classes. Two hypotheses are presented to account for the widespread distribution of the two divergent lineages in natural populations. Natural selection appears to have played an important role in governing the overall patterns of nucleotide variation across the two-gene region.

2017 ◽  
Author(s):  
Susan Bassham ◽  
Julian Catchen ◽  
Emily Lescak ◽  
Frank A. von Hippel ◽  
William A. Cresko

AbstractHeterogeneous genetic divergence can accumulate across the genome when populations adapt to different habitats while still exchanging alleles. How long does diversification take and how much of the genome is affected? When divergence occurs in parallel from standing genetic variation, how often are the same haplotypes used? We explore these questions using RAD-seq genotyping data, and show that broad-scale genomic re-patterning, fueled by standing variation, can emerge in just dozens of generations in replicate natural populations of threespine stickleback fish (Gasterosteus aculeatus). After the catastrophic 1964 Alaskan earthquake, marine stickleback colonized newly created ponds on seismically uplifted islands. We find that freshwater fish in these young ponds differ from their marine ancestors across the same genomic segments previously shown to have diverged in much older lake populations. Outside of these core divergent regions the genome shows no population structure across the ocean-freshwater divide, consistent with strong local selection acting in alternative environments on stickleback populations still connected by significant gene flow.Reinforcing this inference, a majority of divergent haplotypes that are at high frequency in ponds are shared across independent freshwater populations and are detectable, at low frequency, in the sea even across great geographic distances. Building upon previous work in this model species for population genomics, our data suggest that a long history of divergent selection and gene flow across stickleback in oceanic and freshwater habitats has created balanced polymorphism in large genomic blocks of alternatively adapted DNA sequences, ultimately stoking - and potentially channeling - rapid, parallel evolution.


Genetics ◽  
1991 ◽  
Vol 129 (2) ◽  
pp. 489-499 ◽  
Author(s):  
C C Laurie ◽  
J T Bridgham ◽  
M Choudhary

Abstract A large part of the genetic variation in alcohol dehydrogenase (ADH) activity level in natural populations of Drosophila melanogaster is associated with segregation of an amino acid replacement polymorphism at nucleotide 1490, which generates a difference in electrophoretic mobility. Part of the allozymic difference in activity level is due to a catalytic efficiency difference, which is also caused by the amino acid replacement, and part is due to a difference in the concentration of ADH protein. A previous site-directed in vitro mutagenesis experiment clearly demonstrated that the amino acid replacement has no effect on the concentration of ADH protein, nor does a strongly associated silent polymorphism at nucleotide 1443. Here we analyze associations between polymorphisms within the Adh gene and variation in ADH protein level for a number of chromosomes derived from natural populations. A sequence length polymorphism within the first intron of the distal (adult) transcript, 1, is in strong linkage disequilibrium with the amino acid replacement. Among a sample of 46 isochromosomal lines analyzed, all but one of the 14 Fast lines have 1 and all but one of the 32 Slow lines lack 1. The exceptional Fast line has an unusually low level of ADH protein (typical of Slow lines) and the exceptional Slow line has an unusually high level (typical of Fast lines). These results suggest that the 1 polymorphism may be responsible for the average difference in ADH protein between the allozymic classes. A previous experiment localized the effect on ADH protein to a 2.3-kb restriction fragment. DNA sequences of this fragment from several alleles of each allozymic type indicate that no other polymorphisms within this region are as closely associated with the ADH protein level difference as the 1 polymorphism.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 667-677
Author(s):  
Hitoshi Araki ◽  
Nobuyuki Inomata ◽  
Tsuneyuki Yamazaki

Abstract In this study, we randomly sampled Drosophila melanogaster from Japanese and Kenyan natural populations. We sequenced duplicated (proximal and distal) Amy gene regions to test whether the patterns of polymorphism were consistent with neutral molecular evolution. Fst between the two geographically distant populations, estimated from Amy gene regions, was 0.084, smaller than reported values for other loci, comparing African and Asian populations. Furthermore, little genetic differentiation was found at a microsatellite locus (DROYANETSB) in these samples (Gst′=−0.018). The results of several tests (Tajima's, Fu and Li's, and Wall's tests) were not significantly different from neutrality. However, a significantly higher level of fixed replacement substitutions was detected by a modified McDonald and Kreitman test for both populations. This indicates that positive selection occurred during or immediately after the speciation of D. melanogaster. Sliding-window analysis showed that the proximal region 1, a part of the proximal 5′ flanking region, was conserved between D. melanogaster and its sibling species, D. simulans. An HKA test was significant when the proximal region 1 was compared with the 5′ flanking region of Alcohol dehydrogenase (Adh), indicating a severe selective constraint on the Amy proximal region 1. These results suggest that natural selection has played an important role in the molecular evolution of Amy gene regions in D. melanogaster.


2020 ◽  
Vol 16 (2) ◽  
pp. 20190803
Author(s):  
David Kang ◽  
Angela E. Douglas

Most research on the nutritional significance of the gut microbiome is conducted on laboratory animals, and its relevance to wild animals is largely unknown. This study investigated the microbiome correlates of lipid content in individual wild fruit flies, Drosophila melanogaster . Lipid content varied 3.6-fold among the flies and was significantly correlated with the abundance of gut-derived bacterial DNA sequences that were assigned to genes contributing to 16 KEGG pathways. These included genes encoding sugar transporters and enzymes in glycolysis/gluconeogenesis, potentially promoting sugar consumption by the gut microbiome and, thereby, a lean fly phenotype. Furthermore, the lipid content of wild flies was significantly lower than laboratory flies, indicating that, as for some mammalian models, certain laboratory protocols might be obesogenic for Drosophila . This study demonstrates the value of research on natural populations to identify candidate microbial genes that influence ecologically important host traits.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Andrew G Clark ◽  
David J Begun

Abstract Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2′, was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.


Author(s):  
Rubén Sancho ◽  
Ana Guillem-Amat ◽  
Elena López-Errasquín ◽  
Lucas Sánchez ◽  
Félix Ortego ◽  
...  

AbstractThe sterile insect technique (SIT) is widely used in integrated pest management programs for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata. The genetic interactions between the released individuals from the genetic sexing strains (GSS), used for SIT applications worldwide, and wild individuals have not been studied. Under the hypothesis that a number of Vienna GSS individuals released to the field might not be completely sterile and may produce viable offspring, we have analyzed medfly Spanish field populations to evaluate the presence of Vienna strain genetic markers. To this goal, we have used contrasted nuclear and mitochondrial genetic markers, and two novel sets of nuclear polymorphisms with the potential to be markers to discriminate between Vienna and wild individuals. Nuclear Vienna markers located on the 5th chromosome of Vienna males have been found in 2.2% (19 from 875) of the Spanish wild medfly females captured at the area where SIT is applied. In addition, a female-inherited mitochondrial Vienna marker has been found in two from the 19 females showing nuclear Vienna markers. The detection of several of these markers in single individuals represents evidence of the introgression of Vienna strain into natural populations. However, alternative explanations as their presence at low frequency in wild populations in the studied areas cannot be fully discarded. The undesired release of non-fully sterile irradiated GSS individuals into the field and their interactions with wild flies, and the potential environmental implications should be taken into account in the application of the SIT.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


Genetics ◽  
1978 ◽  
Vol 89 (2) ◽  
pp. 371-388
Author(s):  
John F McDonald ◽  
Francisco J Ayala

ABSTRACT Recent studies by various authors suggest that variation in gene regulation may be common in nature, and might be of great evolutionary consequence; but the ascertainment of variation in gene regulation has proven to be a difficult problem. In this study, we explore this problem by measuring alcohol dehydrogenase (ADH) activity in Drosophila melanogaster strains homozygous for various combinations of given second and third chromosomes sampled from a natural population. The structural locus (Adh) coding for ADH is on the second chromosome. The results show that: (1) there are genes, other than Adh, that affect the levels of ADH activity; (2) at least some of these "regulatory" genes are located on the third chromosome, and thus are not adjacent to the Adh locus; (3) variation exists in natural populations for such regulatory genes; (4) the effect of these regulatory genes varies as they interact with different second chromosomes; (5) third chromosomes with high-activity genes are either partially or completely dominant over chromosomes with low-activity genes; (6) the effects of the regulatory genes are pervasive throughout development; and (7) the third chromosome genes regulate the levels of ADH activity by affecting the number of ADH molecules in the flies. The results are consistent with the view that the evolution of regulatory genes may play an important role in adaptation.


Sign in / Sign up

Export Citation Format

Share Document