scholarly journals A Novel Involvement of the PurG and PurI Proteins in Thiamine Synthesis Via the Alternative Pyrimidine Biosynthetic (APB) Pathway in Salmonella typhimurium

Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 883-892 ◽  
Author(s):  
Julie L Zilles ◽  
Diana M Downs

Abstract Thiamine is thought to be synthesized by two alternative pathways, one involving the first four enzymes of the purine pathway and a second that can function independently of the purine pathway. Insertion mutations in purG and purl prevent thiamine synthesis through the alternative pyrimidine biosynthetic (APB) pathway under aerobic but not anaerobic growth conditions. In contrast, point mutations in purG and purl caused one of three distinct phenotypes: Pur− Apb−, Pur− Apb+, or Pur+ Apb−. Analysis of these three mutant classes demonstrated two genetically separable functions for PurG and PurI in thiamine synthesis. In addition to their known enzymatic role in de novo purine synthesis, we propose that PurG and PurI play a novel, possibly nonenzymatic role in the APB pathway. Suppression analysis of Pur− Apb− mutants identified two new genetic loci involved in the APB pathway, apbB and apbD. We show here that mutations in apbB and apbD cause distinct, allele-specific suppression of the thiamine requirement of purG and purl mutants. Our results suggest that PurG and PurI and one or more components of the APB pathway may function as a complex needed for aerobic function of the APB pathway.

2020 ◽  
pp. 411-425 ◽  
Author(s):  
Jing Zhao ◽  
Yang Xia

PURPOSE HER2 is a critical gene that drives various solid tumors in addition to those of breast cancer. For example, HER2 plays a role in non–small-cell lung cancer (NSCLC). Overexpression, amplification, and point mutations in HER2 have been described in patients with NSCLC; however, the potential roles of these alterations remain unclear. METHODS We summarize the evidence regarding the distinct impacts of different HER2 aberrations on antitumor agents. Also, we update the therapeutic efficacy of HER2-targeted agents, including anti-HER2 antibodies, antibody-drug conjugates, and small-molecule tyrosine kinase inhibitors, tested in HER2-aberrant NSCLC. RESULTS Although these drugs are not yet standard treatments, certain patients may benefit from these therapies. In this review, we aim to provide an improved understanding of HER2 aberrations in NSCLC, including NSCLC biology and the impacts of each aberration on prognosis and standard treatment. We also highlight the potential of novel anti-HER2 therapies approved by regulatory bodies and those in clinical development. CONCLUSION Compared with HER2 amplification or overexpression, HER2 mutations, especially HER2 exon 20 mutations, are emerging as the most clear targetable driver for HER2-directed therapies in lung cancer. De novo and inducible HER2 pathway activation need to be differentially managed. Further investigations with new strategies are needed.


1993 ◽  
Vol 296 (3) ◽  
pp. 851-857 ◽  
Author(s):  
T Belyaeva ◽  
L Griffiths ◽  
S Minchin ◽  
J Cole ◽  
S Busby

The Escherichia coli cysG promoter has been subcloned and shown to function constitutively in a range of different growth conditions. Point mutations identify the -10 hexamer and an important 5′-TGN-3′ motif immediately upstream. The effects of different deletions suggest that specific sequences in the -35 region are not essential for the activity of this promoter in vivo. This conclusion was confirmed by in vitro run-off transcription assays. The DNAase I footprint of RNA polymerase at the cysG promoter reveals extended protection upstream of the transcript start, and studies with potassium permanganate as a probe suggest that the upstream region is distorted in open complexes. Taken together, the results show that the cysG promoter belongs to the ‘extended -10’ class of promoters, and the base sequence is similar to that of the P1 promoter of the E. coli galactose operon, another promoter in this class. In vivo, messenger initiated at the cysG promoter appears to be processed by cleavage at a site 41 bases downstream from the transcript start point.


2019 ◽  
Author(s):  
Glenn Hickey ◽  
David Heller ◽  
Jean Monlong ◽  
Jonas A. Sibbesen ◽  
Jouni Sirén ◽  
...  

AbstractStructural variants (SVs) remain challenging to represent and study relative to point mutations despite their demonstrated importance. We show that variation graphs, as implemented in the vg toolkit, provide an effective means for leveraging SV catalogs for short-read SV genotyping experiments. We benchmarked vg against state-of-the-art SV genotypers using three sequence-resolved SV catalogs generated by recent long-read sequencing studies. In addition, we use assemblies from 12 yeast strains to show that graphs constructed directly from aligned de novo assemblies improve genotyping compared to graphs built from intermediate SV catalogs in the VCF format.


2017 ◽  
Vol 15 (1) ◽  
pp. 33-34
Author(s):  
Nikolina Basic-Jukic ◽  
Vesna Furic-Cunko ◽  
Ivana Juric ◽  
Lea Katalinic ◽  
Ana Rukavina ◽  
...  

AbstractPropionibacterium acnes is a gram-positive human skin commensal that is involved in the pathogenesis of acne and prefers anaerobic growth conditions. It has been considered as a low virulence pathogen in different clinical conditions. We present the case of acute peritonitis caused by Propionibacterium acnes in a peritoneal dialysis patient.


2018 ◽  
Author(s):  
Avantika Lal ◽  
Keli Liu ◽  
Robert Tibshirani ◽  
Arend Sidow ◽  
Daniele Ramazzotti

AbstractCancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or “mutational signatures”. Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates DNA replication error as a background, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using standard metrics. We then apply SparseSignatures to whole genome sequences of 147 tumors from pancreatic cancer, discovering 8 signatures in addition to the background.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 146
Author(s):  
Angelo Pavesi ◽  
Fabio Romerio

Gene overprinting occurs when point mutations within a genomic region with an existing coding sequence create a new one in another reading frame. This process is quite frequent in viral genomes either to maximize the amount of information that they encode or in response to strong selective pressure. The most frequent scenario involves two different reading frames in the same DNA strand (sense overlap). Much less frequent are cases of overlapping genes that are encoded on opposite DNA strands (antisense overlap). One such example is the antisense ORF, asp in the minus strand of the HIV-1 genome overlapping the env gene. The asp gene is highly conserved in pandemic HIV-1 strains of group M, and it is absent in non-pandemic HIV-1 groups, HIV-2, and lentiviruses infecting non-human primates, suggesting that the ~190-amino acid protein that is expressed from this gene (ASP) may play a role in virus spread. While the function of ASP in the virus life cycle remains to be elucidated, mounting evidence from several research groups indicates that ASP is expressed in vivo. There are two alternative hypotheses that could be envisioned to explain the origin of the asp ORF. On one hand, asp may have originally been present in the ancestor of contemporary lentiviruses, and subsequently lost in all descendants except for most HIV-1 strains of group M due to selective advantage. Alternatively, the asp ORF may have originated very recently with the emergence of group M HIV-1 strains from SIVcpz. Here, we used a combination of computational and statistical approaches to study the genomic region of env in primate lentiviruses to shed light on the origin, structure, and sequence evolution of the asp ORF. The results emerging from our studies support the hypothesis of a recent de novo addition of the antisense ORF to the HIV-1 genome through a process that entailed progressive removal of existing internal stop codons from SIV strains to HIV-1 strains of group M, and fine tuning of the codon sequence in env that reduced the chances of new stop codons occurring in asp. Altogether, the study supports the notion that the HIV-1 asp gene encodes an accessory protein, providing a selective advantage to the virus.


2020 ◽  
Author(s):  
Jonathan R. Belyeu ◽  
Harrison Brand ◽  
Harold Wang ◽  
Xuefang Zhao ◽  
Brent S. Pedersen ◽  
...  

AbstractEach human genome includes de novo mutations that arose during gametogenesis. While these germline mutations represent a fundamental source of new genetic diversity, they can also create deleterious alleles that impact fitness. The germline mutation rate for single nucleotide variants and factors that significantly influence this rate, such as parental age, are now well established. However, far less is known about the frequency, distribution, and features that impact de novo structural mutations. We report a large, family-based study of germline mutations, excluding aneuploidy, that affect genome structure among 572 genomes from 33 families in a multigenerational CEPH-Utah cohort and 2,363 cases of non-familial autism spectrum disorder (ASD), 1,938 unaffected siblings, and both parents (9,599 genomes in total). We find that de novo structural mutations detected by alignment-based, short-read WGS occurred at an overall rate of at least 0.160 events per genome in unaffected individuals and was significantly higher (0.206 per genome) in ASD cases. In both probands and unaffected samples, nearly 73% of de novo structural mutations arose in paternal gametes, and predict most de novo structural mutations to be caused by mutational mechanisms that do not require sequence homology. After multiple testing correction we did not observe a statistically significant correlation between parental age and the rate of de novo structural variation in offspring. These results highlight that a spectrum of mutational mechanisms contribute to germline structural mutations, and that these mechanisms likely have markedly different rates and selective pressures than those leading to point mutations.


Author(s):  
Colton J. Lloyd ◽  
Jonathan Monk ◽  
Laurence Yang ◽  
Ali Ebrahim ◽  
Bernhard O. Palsson

AbstractSustaining a robust metabolic network requires a balanced and fully functioning proteome. In addition to amino acids, many enzymes require cofactors (coenzymes and engrafted prosthetic groups) to function properly. Extensively validated genome-scale models of metabolism and gene expression (ME-models) have the unique ability to compute an optimal proteome composition underlying a metabolic phenotype, including the provision of all required cofactors. Here we use the ME-model for Escherichia coli K-12 MG1655 to computationally examine how environmental conditions change the proteome and its accompanying cofactor usage. We found that: (1) The cofactor requirements computed by the ME model mostly agree with the standard biomass objective function used in models of metabolism alone (M models); (2) ME-model computations reveal non-intuitive variability in cofactor use under different growth conditions; (3) An analysis of ME-model predicted protein use in aerobic and anaerobic conditions suggests an enrichment in the use of prebiotic amino acids in the proteins used to sustain anaerobic growth (4) The ME-model could describe how limitation in key protein components affect the metabolic state of E. coli. Genome-scale models have thus reached a level of sophistication where they reveal intricate properties of functional proteomes and how they support different E. coli lifestyles.


Sign in / Sign up

Export Citation Format

Share Document