Cell Cycle Arrest in cdc20 Mutants of Saccharomyces cerevisiae Is Independent of Ndc10p and Kinetochore Function but Requires a Subset of Spindle Checkpoint Genes

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1701-1713
Author(s):  
Penny A Tavormina ◽  
Daniel J Burke

Abstract The spindle checkpoint ensures accurate chromosome segregation by inhibiting anaphase onset in response to altered microtubule function and impaired kinetochore function. In this study, we report that the ability of the anti-microtubule drug nocodazole to inhibit cell cycle progression in Saccharomyces cerevisiae depends on the function of the kinetochore protein encoded by NDC10. We examined the role of the spindle checkpoint in the arrest in cdc20 mutants that arrest prior to anaphase with an aberrant spindle. The arrest in cdc20 defective cells is dependent on the BUB2 checkpoint and independent of the BUB1, BUB3, and MAD spindle checkpoint genes. We show that the lesion recognized by Bub2p is not excess microtubules, and the cdc20 arrest is independent of kinetochore function. We show that Cdc20p is not required for cyclin proteolysis at two points in the cell cycle, suggesting that CDC20 is distinct from genes encoding integral proteins of the anaphase promoting complex.

1995 ◽  
Vol 15 (12) ◽  
pp. 6838-6844 ◽  
Author(s):  
Y Wang ◽  
D J Burke

Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.


Genetics ◽  
1998 ◽  
Vol 148 (2) ◽  
pp. 599-610
Author(s):  
Eric J Schott ◽  
M Andrew Hoyt

Abstract We identified an allele of Saccharomyces cerevisiae CDC20 that exhibits a spindle-assembly checkpoint defect. Previous studies indicated that loss of CDC20 function caused cell cycle arrest prior to the onset of anaphase. In contrast, CDC20-50 caused inappropriate cell cycle progression through M phase in the absence of mitotic spindle function. This effect of CDC20-50 was dominant over wild type and was eliminated by a second mutation causing loss of function, suggesting that it encodes an overactive form of Cdc20p. Overexpression of CDC20 was found to cause a similar checkpoint defect, causing bypass of the preanaphase arrest produced by either microtubule-depolymerizing compounds or MPS1 overexpression. CDC20 overexpression was also able to overcome the anaphase delay caused by high levels of the anaphase inhibitor Pds1p, but not a mutant form immune to anaphase-promoting complex- (APC-)mediated proteolysis. CDC20 overexpression was unable to promote anaphase in cells deficient in APC function. These findings suggest that Cdc20p is a limiting factor that promotes anaphase entry by antagonizing Pds1p. Cdc20p may promote the APC-dependent proteolytic degradation of Pds1p and other factors that act to inhibit cell cycle progression through mitosis.


2008 ◽  
Vol 28 (18) ◽  
pp. 5698-5709 ◽  
Author(s):  
Hanna-Stina Martinsson-Ahlzén ◽  
Vasco Liberal ◽  
Björn Grünenfelder ◽  
Susana R. Chaves ◽  
Charles H. Spruck ◽  
...  

ABSTRACT Cks proteins associate with cyclin-dependent kinases and have therefore been assumed to play a direct role in cell cycle regulation. Mammals have two paralogs, Cks1 and Cks2, and individually deleting the gene encoding either in the mouse has previously been shown not to impact viability. In this study we show that simultaneously disrupting CKS1 and CKS2 leads to embryonic lethality, with embryos dying at or before the morula stage after only two to four cell division cycles. RNA interference (RNAi)-mediated silencing of CKS genes in mouse embryonic fibroblasts (MEFs) or HeLa cells causes cessation of proliferation. In MEFs CKS silencing leads to cell cycle arrest in G2, followed by rereplication and polyploidy. This phenotype can be attributed to impaired transcription of the CCNB1, CCNA2, and CDK1 genes, encoding cyclin B1, cyclin A, and Cdk1, respectively. Restoration of cyclin B1 expression rescues the cell cycle arrest phenotype conferred by RNAi-mediated Cks protein depletion. Consistent with a direct role in transcription, Cks2 is recruited to chromatin in general and to the promoter regions and open reading frames of genes requiring Cks function with a cell cycle periodicity that correlates with their transcription.


2008 ◽  
Vol 40 (3) ◽  
pp. 101-112 ◽  
Author(s):  
Jack-Michel Renoir ◽  
Céline Bouclier ◽  
Amélie Seguin ◽  
Véronique Marsaud ◽  
Brigitte Sola

Antioestrogens (AEs) are synthetic molecules that block proliferation and induce apoptosis in breast cancer (BC) cells, principally by competing with oestradiol for binding to oestrogen receptors. Their antiproliferative activity and their pro-apoptotic capacity are well documented and a small number of molecules of this class are currently used clinically for the treatment of BC. AEs also inhibit cell cycle progression and/or induce apoptosis in multiple myeloma (MM) cells. Encouraging preliminary results have been obtained with patients and on xenografts with MM, providing a rational basis for the clinical use of AEs. This review focuses on antioestrogen-mediated signalling for blocking targets involved in the cell cycle, survival and apoptosis in both BC and MM cells. Improvement in our understanding of the mechanisms underlying the relationships between these compounds and their targets should lead to more beneficial therapeutic strategies.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 323-334
Author(s):  
S B Preuss ◽  
A B Britt

Abstract Although it is well established that plant seeds treated with high doses of gamma radiation arrest development as seedlings, the cause of this arrest is unknown. The uvh1 mutant of Arabidopsis is defective in a homolog of the human repair endonuclease XPF, and uvh1 mutants are sensitive to both the toxic effects of UV and the cytostatic effects of gamma radiation. Here we find that gamma irradiation of uvh1 plants specifically triggers a G2-phase cell cycle arrest. Mutants, termed suppressor of gamma (sog), that suppress this radiation-induced arrest and proceed through the cell cycle unimpeded were recovered in the uvh1 background; the resulting irradiated plants are genetically unstable. The sog mutations fall into two complementation groups. They are second-site suppressors of the uvh1 mutant's sensitivity to gamma radiation but do not affect the susceptibility of the plant to UV radiation. In addition to rendering the plants resistant to the growth inhibitory effects of gamma radiation, the sog1 mutation affects the proper development of the pollen tetrad, suggesting that SOG1 might also play a role in the regulation of cell cycle progression during meiosis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pan Wang ◽  
Sheng Gong ◽  
Jinyu Pan ◽  
Junwei Wang ◽  
Dewei Zou ◽  
...  

AbstractThere exists a consensus that combining hyperbaric oxygen (HBO) and chemotherapy promotes chemotherapy sensitivity in GBM cells. However, few studies have explored the mechanism involved. HIF1α and HIF2α are the two main molecules that contribute to GBM malignant progression by inhibiting apoptosis or maintaining stemness under hypoxic conditions. Moreover, Sox2, a marker of stemness, also contributes to GBM malignant progression through stemness maintenance or cell cycle arrest. Briefly, HIF1α, HIF2α and Sox2 are highly expressed under hypoxia and contribute to GBM growth and chemoresistance. However, after exposure to HBO for GBM, whether the expression of the above factors is decreased, resulting in chemosensitization, remains unknown. Therefore, we performed a series of studies and determined that the expression of HIF1α, HIF2α and Sox2 was decreased after HBO and that HBO promoted GBM cell proliferation through cell cycle progression, albeit with a decrease in stemness, thus contributing to chemosensitization via the inhibition of HIF1α/HIF2α-Sox2.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1493-1502
Author(s):  
Richard D Gardner ◽  
Atasi Poddar ◽  
Chris Yellman ◽  
Penny A Tavormina ◽  
M Cristina Monteagudo ◽  
...  

Abstract We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.


2010 ◽  
Vol 84 (24) ◽  
pp. 12832-12840 ◽  
Author(s):  
Yuan He ◽  
Ke Xu ◽  
Bjoern Keiner ◽  
Jianfang Zhou ◽  
Volker Czudai ◽  
...  

ABSTRACT Many viruses interact with the host cell division cycle to favor their own growth. In this study, we examined the ability of influenza A virus to manipulate cell cycle progression. Our results show that influenza A virus A/WSN/33 (H1N1) replication results in G0/G1-phase accumulation of infected cells and that this accumulation is caused by the prevention of cell cycle entry from G0/G1 phase into S phase. Consistent with the G0/G1-phase accumulation, the amount of hyperphosphorylated retinoblastoma protein, a necessary active form for cell cycle progression through late G1 into S phase, decreased after infection with A/WSN/33 (H1N1) virus. In addition, other key molecules in the regulation of the cell cycle, such as p21, cyclin E, and cyclin D1, were also changed and showed a pattern of G0/G1-phase cell cycle arrest. It is interesting that increased viral protein expression and progeny virus production in cells synchronized in the G0/G1 phase were observed compared to those in either unsynchronized cells or cells synchronized in the G2/M phase. G0/G1-phase cell cycle arrest is likely a common strategy, since the effect was also observed in other strains, such as H3N2, H9N2, PR8 H1N1, and pandemic swine H1N1 viruses. These findings, in all, suggest that influenza A virus may provide favorable conditions for viral protein accumulation and virus production by inducing a G0/G1-phase cell cycle arrest in infected cells.


1997 ◽  
Vol 110 (19) ◽  
pp. 2345-2357 ◽  
Author(s):  
A. Battistoni ◽  
G. Guarguaglini ◽  
F. Degrassi ◽  
C. Pittoggi ◽  
A. Palena ◽  
...  

RanBP1 is a molecular partner of the Ran GTPase, which is implicated in the control of several processes, including DNA replication, mitotic entry and exit, cell cycle progression, nuclear structure, protein import and RNA export. While most genes encoding Ran-interacting partners are constitutively active, transcription of the RanBP1 mRNA is repressed in non proliferating cells, is activated at the G1/S transition in cycling cells and peaks during S phase. We report here that forced expression of the RanBP1 gene disrupts the orderly execution of the cell division cycle at several stages, causing inhibition of DNA replication, defective mitotic exit and failure of chromatin decondensation during the telophase-to-interphase transition in cells that achieve nuclear duplication and chromosome segregation. These results suggest that deregulated RanBP1 activity interferes with the Ran GTPase cycle and prevents the functioning of the Ran signalling system during the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document