scholarly journals Male Seminal Fluid Proteins Are Essential for Sperm Storage in Drosophila melanogaster

Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 837-844 ◽  
Author(s):  
Uyen Tram ◽  
Mariana F Wolfner

AbstractThe seminal fluid that is transferred along with sperm during mating acts in many ways to maximize a male’s reproductive success. Here, we use transgenic Drosophila melanogaster males deficient in the seminal fluid proteins derived from the accessory gland (Acps) to investigate the role of these proteins in the fate of sperm transferred to females during mating. Competitive PCR assays were used to show that while Acps contribute to the efficiency of sperm transfer, they are not essential for the transfer of sperm to the female. In contrast, we found that Acps are essential for storage of sperm by females. Direct counts of stored sperm showed that 10% of normal levels are stored by females whose mates transfer little or no Acps along with sperm.

Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 845-857 ◽  
Author(s):  
Deborah M Neubaum ◽  
Mariana F Wolfner

Abstract Mated females of many animal species store sperm. Sperm storage profoundly influences the number, timing, and paternity of the female’s progeny. To investigate mechanisms for sperm storage in Drosophila melanogaster, we generated and analyzed mutations in Acp36DE. Acp36DE is a male seminal fluid protein whose localization in mated females suggested a role in sperm storage. We report that male-derived Acp36DE is essential for efficient sperm storage by females. Acp36DE1 (null) mutant males produced and transferred normal amounts of sperm and seminal fluid proteins. However, mates of Acp36DE1 males stored only 15% as many sperm and produced 10% as many adult progeny as control-mated females. Moreover, without Acp36DE, mated females failed to maintain an elevated egg-laying rate and decreased receptivity, behaviors whose persistence (but not initiation) normally depends on the presence of stored sperm. Previous studies suggested that a barrier in the oviduct confines sperm and Acp36DE to a limited area near the storage organs. We show that Acp36DE is not required for barrier formation, but both Acp36DE and the barrier are required for maximal sperm storage. Acp36DE associates tightly with sperm. Our results indicate that Acp36DE is essential for the initial storage of sperm, and that it may also influence the arrangement and retention of stored sperm.


Genetics ◽  
2002 ◽  
Vol 160 (1) ◽  
pp. 211-224
Author(s):  
Oliver Lung ◽  
Uyen Tram ◽  
Casey M Finnerty ◽  
Marcie A Eipper-Mains ◽  
John M Kalb ◽  
...  

Abstract Drosophila melanogaster seminal fluid proteins stimulate sperm storage and egg laying in the mated female but also cause a reduction in her life span. We report here that of eight Drosophila seminal fluid proteins (Acps) and one non-Acp tested, only Acp62F is toxic when ectopically expressed. Toxicity to preadult male or female Drosophila occurs upon one exposure, whereas multiple exposures are needed for toxicity to adult female flies. Of the Acp62F received by females during mating, ~10% enters the circulatory system while ~90% remains in the reproductive tract. We show that in the reproductive tract, Acp62F localizes to the lumen of the uterus and the female's sperm storage organs. Analysis of Acp62F's sequence, and biochemical assays, reveals that it encodes a trypsin inhibitor with sequence and structural similarities to extracellular serine protease inhibitors from the nematode Ascaris. In light of previous results demonstrating entry of Acp62F into the mated female's hemolymph, we propose that Acp62F is a candidate for a molecule to contribute to the Acp-dependent decrease in female life span. We propose that Acp62F's protease inhibitor activity exerts positive protective functions in the mated female's reproductive tract but that entry of a small amount of this protein into the female's hemolymph could contribute to the cost of mating.


2012 ◽  
Vol 279 (1746) ◽  
pp. 4423-4432 ◽  
Author(s):  
A. Gioti ◽  
S. Wigby ◽  
B. Wertheim ◽  
E. Schuster ◽  
P. Martinez ◽  
...  

Seminal fluid proteins (Sfps) alter female behaviour and physiology and can mediate sexual conflict. In Drosophila melanogaster , a single Sfp, the sex peptide (SP), triggers remarkable post-mating responses in females, including altered fecundity, feeding, immunity and sexual receptivity. These effects can favour the evolutionary interests of males while generating costs in females. We tested the hypothesis that SP is an upstream master-regulator able to induce diverse phenotypes through efficient induction of widespread transcriptional changes in females. We profiled mRNA responses to SP in adult female abdomen (Abd) and head+thorax (HT) tissues using microarrays at 3 and 6 h following mating. SP elicited a rich, subtle signature of temporally and spatially controlled mRNAs. There were significant alterations to genes linked to egg development, early embryogenesis, immunity, nutrient sensing, behaviour and, unexpectedly, phototransduction. There was substantially more variation in the direction of differential expression across time points in the HT versus Abd. The results support the idea that SP is an important regulator of gene expression in females. The expression of many genes in one sex can therefore be under the influence of a regulator expressed in the other. This could influence the extent of sexual conflict both within and between loci.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofie Y. N. Delbare ◽  
Yasir H. Ahmed-Braimah ◽  
Mariana F. Wolfner ◽  
Andrew G. Clark

Abstract Drosophila melanogaster females undergo a variety of post-mating changes that influence their activity, feeding behavior, metabolism, egg production and gene expression. These changes are induced either by mating itself or by sperm or seminal fluid proteins. In addition, studies have shown that axenic females—those lacking a microbiome—have altered fecundity compared to females with a microbiome, and that the microbiome of the female’s mate can influence reproductive success. However, the extent to which post-mating changes in transcript abundance are affected by microbiome state is not well-characterized. Here we investigated fecundity and the post-mating transcript abundance profile of axenic or control females after mating with either axenic or control males. We observed interactions between the female’s microbiome and her mating status: transcripts of genes involved in reproduction and genes with neuronal functions were differentially abundant depending on the females’ microbiome status, but only in mated females. In addition, immunity genes showed varied responses to either the microbiome, mating, or a combination of those two factors. We further observed that the male’s microbiome status influences the fecundity of both control and axenic females, while only influencing the transcriptional profile of axenic females. Our results indicate that the microbiome plays a vital role in the post-mating switch of the female’s transcriptome.


Genome ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 900-910 ◽  
Author(s):  
Mara KN Lawniczak ◽  
David J Begun

In Drosophila melanogaster, seminal fluid proteins influence several components of female physiology and behavior, including re-mating rates, ovulation and oviposition, and sperm use. It is well-known that female flies are not simply passive vessels and that female-mediated interactions with male products are important to female (and thus male) reproductive success. While the population genetics, molecular evolution and physiological effects of seminal fluid proteins have been examined, the genetics and evolution of the female side of these post-mating interactions is unexplored in spite of work showing that female genotype and female-by-male genotype interactions are important determinants of sperm competition outcomes. Here we use microarrays to identify candidate genes involved in the female side of post-mating sexual interactions. We report the results of a whole-genome oligonucleotide chip experiment that reveals 23 genes differentially expressed between virgin females exposed and unexposed to courting males, and 38 genes differentially expressed between virgin and recently mated females. Immune related genes are overrepresented among the mating-influenced candidates. We use quantitative reverse-transcriptase PCR to independently assess gene expression changes for roughly half of the mating-affected candidate genes.Key words: reproduction, gene expression, Drosophila immune related genes, serine proteases, accessory gland proteins.


2018 ◽  
Vol 285 (1886) ◽  
pp. 20181563 ◽  
Author(s):  
Kristina U. Wensing ◽  
Claudia Fricke

Transfer and receipt of seminal fluid proteins crucially affect reproductive processes in animals. Evolution in these male ejaculatory proteins is explained with post-mating sexual selection, but we lack a good understanding of the evolution of female post-mating responses (PMRs) to these proteins. Some of these proteins are expected to mediate sexually antagonistic coevolution generating the expectation that females evolve resistance. One candidate in Drosophila melanogaster is the sex peptide (SP) which confers cost of mating in females. In this paper, we compared female SP-induced PMRs across three D. melanogaster wild-type populations after mating with SP-lacking versus control males including fitness measures. Surprisingly, we did not find any evidence for SP-mediated fitness costs in any of the populations. However, female lifetime reproductive success and lifespan were differently affected by SP receipt indicating that female PMRs diverged among populations. Injection of synthetic SP into virgin females further supported these findings and suggests that females from different populations require different amounts of SP to effectively initiate PMRs. Molecular analyses of the SP receptor suggest that genetic differences might explain the observed phenotypical divergence. We discuss the evolutionary processes that might have caused this divergence in female PMRs.


2019 ◽  
Author(s):  
Allison M. Box ◽  
Samuel Jaimian Church ◽  
David Hayes ◽  
Shyama Nandakumar ◽  
Russell S. Taichman ◽  
...  

AbstractThe Drosophila melanogaster accessory gland is a functional analog of the mammalian prostate made up of two secretory epithelial cell types, termed main and secondary cells. This tissue is responsible for making and secreting seminal fluid proteins and other molecules that contribute to successful reproduction. Here we show that similar to the mammalian prostate, this tissue grows with age. We find that the adult accessory gland grows in part via endocycles to increase DNA content and cell size, independent of mating status. The differentiated, bi-nucleated main cells remain poised to endocycle in the adult gland and upregulation of signals that promote endocycling and tissue growth are sufficient to trigger dramatic endocycling leading to increases in cell size and ploidy. The main cells of this tissue remain poised to enter the cell cycle and endocycling of main cells increases during recovery from severe tissue damage. Our data establish that the adult accessory gland is not quiescent, but instead uses endocycles to maintain the accessory gland’s critical function throughout the fruit fly’s lifespan.


Genetics ◽  
2021 ◽  
Author(s):  
Alex C Majane ◽  
Julie M Cridland ◽  
David J Begun

Abstract Many traits responsible for male reproduction evolve quickly, including gene expression phenotypes in germline and somatic male reproductive tissues. Rapid male evolution in polyandrous species is thought to be driven by competition among males for fertilizations and conflicts between male and female fitness interests that manifest in post-copulatory phenotypes. In Drosophila, seminal fluid proteins secreted by three major cell types of the male accessory gland and ejaculatory duct are required for female sperm storage and use, and influence female post-copulatory traits. Recent work has shown that these cell types have overlapping but distinct effects on female post-copulatory biology, yet relatively little is known about their evolutionary properties. Here we use single-nucleus RNA-Seq of the accessory gland and ejaculatory duct from Drosophila melanogaster and two closely related species to comprehensively describe the cell diversity of these tissues and their transcriptome evolution for the first time. We find that seminal fluid transcripts are strongly partitioned across the major cell types, and expression of many other genes additionally define each cell type. We also report previously undocumented diversity in main cells. Transcriptome divergence was found to be heterogeneous across cell types and lineages, revealing a complex evolutionary process. Furthermore, protein adaptation varied across cell types, with potential consequences for our understanding of selection on male post-copulatory traits.


2018 ◽  
Vol 35 (5) ◽  
pp. 446 ◽  
Author(s):  
Kiichiro Taniguchi ◽  
Akihiko Kokuryo ◽  
Takao Imano ◽  
Hideki Nakagoshi ◽  
Takashi Adachi-Yamada

2012 ◽  
Vol 2 (1) ◽  
pp. 2 ◽  
Author(s):  
Yasir Hasan Siddique

In the present study the effects of curcumin was studied against the toxic effects induced by 0.025 and 0.050 ml/ml of cyclophosphamide (CP) in the third instar larvae of transgenic <em>Drosophila melanogaster (hsp70-lacZ)Bg9</em> using hsp70 expression and dye exclusion test as a parameter. The exposure of the third instar larvae to 0.025ml/ml of CP along with 1, 5 and 10 mg/ml of curcumin results in the dose dependent significant decrease in the <em>hsp70</em> expression and tissue damage for 12, 24 and 48hr of duration. Similar results were obtained with the exposure of third instar larvae to 0.050 ml/ml of CP along with 1, 5 and 10 mg/ml of curcumin. The selected doses of curcumin i.e. 1, 5 and 10 mg/ml were not toxic but reduced significantly the expression of <em>hsp70</em> and tissue damage induced by CP. The results of the present study suggest that the curcumin has a protective role against the toxic effects of CP in the third instar larvae of transgenic <em>Drosophila melanogaster (hsp70-lacZ)Bg9</em>.


Sign in / Sign up

Export Citation Format

Share Document