scholarly journals The nonA Gene in Drosophila Conveys Species-Specific Behavioral Characteristics

Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1535-1543 ◽  
Author(s):  
Susanna Campesan ◽  
Yuri Dubrova ◽  
Jeffrey C Hall ◽  
Charalambos P Kyriacou

Abstract The molecular basis of species-specific differences in courtship behavior, a critical factor in preserving species boundaries, is poorly understood. Genetic analysis of all but the most closely related species is usually impossible, given the inviability of hybrids. We have therefore applied interspecific transformation of a single candidate behavioral locus, no-on-transient A (nonA), between Drosophila virilis and D. melanogaster, to investigate whether nonA, like the period gene, might encode species-specific behavioral information. Mutations in nonA can disrupt both visual behavior and the courtship song in D. melanogaster. The lovesong of nonAdiss mutant males superficially resembles that of D. virilis, a species that diverged from D. melanogaster 40–60 mya. Transformation of the cloned D. virilis nonA gene into D. melanogaster hosts carrying a synthetic deletion of the nonA locus restored normal visual function (the phenotype most sensitive to nonA mutation). However, the courtship song of transformant males showed several features characteristic of the corresponding D. virilis signal, indicating that nonA can act as a reservoir for species-specific information. This candidate gene approach, together with interspecific transformation, can therefore provide a direct avenue to explore potential speciation genes in genetically and molecularly tractable organisms such as Drosophila.

2000 ◽  
Vol 75 (1) ◽  
pp. 37-45 ◽  
Author(s):  
ANNELI HOIKKALA ◽  
SELIINA PÄÄLLYSAHO ◽  
JOUNI ASPI ◽  
JAAKKO LUMME

The males of six species of the Drosophila virilis group (including D. virilis) keep their wings extended while producing a train of sound pulses, where the pulses follow each other without any pause. The males of the remaining five species of the group produce only one sound pulse during each wing extension/vibration, which results in species-specific songs with long pauses (in D. littoralis about 300 ms) between successive sound pulses. Genetic analyses of the differences between the songs of D. virilis and D. littoralis showed that species-specific song traits are affected by genes on the X chromosome, and for the length of pause, also by genes on chromosomes 3 and 4. The X chromosomal genes having a major impact on pulse and pause length were tightly linked with white, apricot and notched marker genes located at the proximal third of the chromosome. A large inversion in D. littoralis, marked by notched, prevents more precise localization of these genes by classical crossing methods.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Oleg S. Alexandrov ◽  
Olga V. Razumova ◽  
Gennady I. Karlov

5S rDNA is organized as a cluster of tandemly repeated monomers that consist of the conservative 120 bp coding part and non-transcribed spacers (NTSs) with different lengths and sequences among different species. The polymorphism in the 5S rDNA NTSs of closely related species is interesting for phylogenetic and evolutional investigations, as well as for the development of molecular markers. In this study, the 5S rDNA NTSs were amplified with universal 5S1/5S2 primers in some species of the Elaeagnaceae Adans. family. The polymerase chain reaction (PCR) products of five Elaeagnus species had similar lengths near 310 bp and were different from Shepherdia canadensis (L.) Nutt. and Sh. argentea (Pusch.) Nutt. samples (260 bp and 215 bp, respectively). The PCR products were cloned and sequenced. An analysis of the sequences revealed that intraspecific levels of NTS identity are high (approximately 95–96%) and similar in the Elaeagnus L. species. In Sh. argentea, this level was slightly lower due to the differences in the poly-T region. Moreover, the intergeneric and intervarietal NTS identity levels were studied and compared. Significant differences between species (except E. multiflora Thunb. and E. umbellata Thunb.) and genera were found. Herein, a range of the NTS features is discussed. This study is another step in the investigation of the molecular evolution of Elaeagnaceae and may be useful for the development of species-specific DNA markers in this family.


2019 ◽  
Author(s):  
Andrea Acurio ◽  
Flor T. Rhebergen ◽  
Sarah Paulus ◽  
Virginie Courtier-Orgogozo ◽  
Michael Lang

AbstractBackgroundMale genitals have repeatedly evolved left-right asymmetries, and the causes of such evolution remain unclear. TheDrosophila nannopteragroup contains four species, among which three exhibit left-right asymmetries of distinct genital organs. In the most studied species,Drosophila pachea, males display asymmetric genital lobes and they mate right-sided on top of the female. Copulation position of the other species is unknown.ResultsTo assess whether the evolution of genital asymmetry could be linked to the evolution of one-sided mating, we examined phallus morphology and copulation position inD. pacheaand closely related species. The phallus was found to be symmetric in all investigated species exceptD. pachea, which display an asymmetric phallus with a right-sided gonopore, andD. acanthoptera, which harbor an asymmetrically bent phallus. In all examined species, males were found to position themselves symmetrically on top of the female, except inD. pacheaandD. nannoptera, where males mated right-sided, in distinctive, species-specific positions. In addition, the copulation duration was found to be increased innannopteragroup species compared to closely related outgroup species.ConclusionOur study shows that gains, and possibly losses, of asymmetry in genital morphology and mating position have evolved repeatedly in thenannopteragroup. Current data does not allow us to conclude whether genital asymmetry has evolved in response to changes in mating position, or vice versa.


2020 ◽  
Author(s):  
Katherine M. Eaton ◽  
Moisés A. Bernal ◽  
Nathan J.C. Backenstose ◽  
Trevor J. Krabbenhoft

AbstractLocal adaptation can drive diversification of closely related species across environmental gradients and promote convergence of distantly related taxa that experience similar conditions. We examined a potential case of adaptation to novel visual environments in a species flock (Great Lakes salmonids, genus Coregonus) using a new amplicon genotyping protocol on the Oxford Nanopore Flongle. Five visual opsin genes were amplified for individuals of C. artedi, C. hoyi, C. kiyi, and C. zenithicus. Comparisons revealed species-specific differences in the coding sequence of rhodopsin (Tyr261Phe substitution), suggesting local adaptation by C. kiyi to the blue-shifted depths of Lake Superior. Parallel evolution and “toggling” at this amino acid residue has occurred several times across the fish tree of life, resulting in identical changes to the visual systems of distantly related taxa across replicated environmental gradients. Our results suggest that ecological differences and local adaptation to distinct visual environments are strong drivers of both evolutionary parallelism and diversification.


Heredity ◽  
2003 ◽  
Vol 92 (3) ◽  
pp. 263-269 ◽  
Author(s):  
S Huttunen ◽  
J Aspi ◽  
A Hoikkala ◽  
C Schlötterer

Author(s):  
Robert B. Jordan

A kinetic study generally proceeds after the reactants, products and stoichiometry of the reaction have been satisfactorily characterized. The more one knows about the chemistry of the reaction, the better the conclusions that one can draw from a kinetic study. The discussion here describes techniques often used in inorganic studies, emphasizes their time range and general area of applicability and gives some examples of their use. Further details can be found in other sources. Any experimental kinetic method must somehow monitor change of concentration with time. Many studies are done under pseudo-first-order conditions, and then one must monitor the deficient reactant or product(s) because the other species undergo small changes in concentration. The kinetic method(s) of choice often will be dictated by the time scale of the reaction. The detection method(s) will be determined by the spectroscopic properties of the species to be monitored. The efficient use of materials can be a significant factor in the choice of method because a kinetic study generally involves a number of runs at different concentrations and temperatures, and conservation of difficult to prepare or expensive reagents may be a critical factor. The detection method should be as species specific as possible, and ideally one would like to measure both reactant disappearance and product formation. The method must not be subject to interference from other reactants and should be applicable under a wide range of concentration conditions so that the rate law can be fully explored. Often there is a practical trade-off between specificity, sensitivity and reaction time. For example, NMR is quite specific but rather slow and has relatively low sensitivity, unless the system allows time for signal accumulation. Spectrophotometry in the UV and visible range often has good sensitivity and speed, but the specificity may be poor because absorbance bands are broad and intermediates may have chromophoric properties similar to those of the reactant and/or product. Vibrational Spectrophotometry can be better if the IR bands are sharp, as in the case of metal carbonyls, but the solvent must be chosen to provide an appropriate spectral window.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Serge B. Poda ◽  
Charles Nignan ◽  
Olivier Gnankiné ◽  
Roch K. Dabiré ◽  
Abdoulaye Diabaté ◽  
...  

Abstract Background Mating swarm segregation in closely related insect species may contribute to reproductive isolation. Visual markers are used for swarm formation; however, it is unknown whether they play a key role in swarm location, species segregation and sex aggregation. Methods Using two sympatric closely related species of the Anopheles gambiae complex, An. coluzzii and An. gambiae (s.s.), we investigated in both laboratory and semi-field conditions (i) whether males of the two species use visual markers (black cloths) to locate their swarm; and (ii) whether the presence/absence and size of the marker may differentially affect swarm characteristics. We also investigated whether conspecific virgin females use these markers to join male swarm sites. Results We showed that males of the two species used visual markers but in different ways: An. coluzzii swarm right above the marker whereas An. gambiae (s.s.) locate their swarm at a constant distance of 76.4 ± 0.6 cm from a 20 × 20 cm marker in the laboratory setup and at 206 ± 6 cm from a 60 × 60 cm marker in the semi-field setup. Although increased marker size recruited more mosquitoes and consequently increased the swarm size in the two species, An. coluzzii swarms flew higher and were stretched both vertically and horizontally, while An. gambiae (s.s.) swarms were only stretched horizontally. Virgin females displayed a swarm-like behavior with similar characteristics to their conspecific males. Conclusions Our results provided experimental evidence that both An. coluzzii and An. gambiae (s.s.) males use ground visual markers to form and locate their swarm at species-specific locations. Moreover, the marker size differentially affected swarm characteristics in the two species. Our results also showed that virgin females displayed a swarm-like behavior. However, these “swarms” could be due to the absence of males in our experimental conditions. Nevertheless, the fact that females displayed these “swarms” with the same characteristics as their respective males provided evidence that visual markers are used by the two sexes to join mating spots. Altogether, this suggests that visual markers and the way species and sexes use them could be key cues in species segregation, swarm location and recognition.


Sign in / Sign up

Export Citation Format

Share Document