General Stress Response Regulator RpoS in Adaptive Mutation and Amplification in Escherichia coli

Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 669-680 ◽  
Author(s):  
Mary-Jane Lombardo ◽  
Ildiko Aponyi ◽  
Susan M Rosenberg

Abstract Microbial cells under growth-limiting stress can generate mutations by mechanisms distinct from those in rapidly growing cells. These mechanisms might be specific stress responses that increase mutation rates, potentially altering rates of evolution, or might reflect non-stress-specific processes in rare growing cells. In an Escherichia coli model system, both frameshift reversion mutations and gene amplifications occur as apparent starvation-induced mutations. Whereas frameshift reversion (“point mutation”) requires recombination proteins, the SOS response, and error-prone DNA polymerase IV (DinB), amplification requires neither SOS nor pol IV. We report that both point mutation and amplification require the stationary-phase and general stress response transcription factor RpoS (σS). Growth-dependent mutation does not. Alternative interpretations are excluded. The results imply, first, that point mutation and amplification are stress responses that occur in differentiated stationary-phase (not rare growing) cells and, second, that transient genetic instability, producing both point mutation and genome rearrangement, may be a previously unrecognized component of the RpoS-dependent general stress response.

mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Pabitra Nandy ◽  
Savita Chib ◽  
Aswin Seshasayee

ABSTRACT Escherichia coli populations undergo repeated replacement of parental genotypes with fitter variants deep in stationary phase. We isolated one such variant, which emerged after 3 weeks of maintaining an E. coli K-12 population in stationary phase. This variant displayed a small colony phenotype and slow growth and was able to outcompete its ancestor over a narrow time window in stationary phase. The variant also shows tolerance to beta-lactam antibiotics, though not previously exposed to the antibiotic. We show that an RpoC(A494V) mutation confers the slow growth and small colony phenotype on this variant. The ability of this mutation to confer a growth advantage in stationary phase depends on the availability of the stationary-phase sigma factor σS. The RpoC(A494V) mutation upregulates the σS regulon. As shown over 20 years ago, early in prolonged stationary phase, σS attenuation, but not complete loss of activity, confers a fitness advantage. Our study shows that later mutations enhance σS activity, either by mutating the gene for σS directly or via mutations such as RpoC(A494V). The balance between the activities of the housekeeping major sigma factor and σS sets up a trade-off between growth and stress tolerance, which is tuned repeatedly during prolonged stationary phase. IMPORTANCE An important general mechanism of a bacterium’s adaptation to its environment involves adjusting the balance between growing fast and tolerating stresses. One paradigm where this plays out is in prolonged stationary phase: early studies showed that attenuation, but not complete elimination, of the general stress response enables early adaptation of the bacterium E. coli to the conditions established about 10 days into stationary phase. We show here that this balance is not static and that it is tilted back in favor of the general stress response about 2 weeks later. This can be established by direct mutations in the master regulator of the general stress response or by mutations in the core RNA polymerase enzyme itself. These conditions can support the development of antibiotic tolerance although the bacterium is not exposed to the antibiotic. Further exploration of the growth-stress balance over the course of stationary phase will necessarily require a deeper understanding of the events in the extracellular milieu.


2007 ◽  
Vol 189 (11) ◽  
pp. 4204-4216 ◽  
Author(s):  
Laurent Sauviac ◽  
Heinui Philippe ◽  
Kounthéa Phok ◽  
Claude Bruand

ABSTRACT Sinorhizobium meliloti genes transcriptionally up-regulated after heat stress, as well as upon entry into stationary phase, were identified by microarray analyses. Sixty stress response genes were thus found to be up-regulated under both conditions. One of them, rpoE2 (smc01506), encodes a putative extracytoplasmic function (ECF) sigma factor. We showed that this sigma factor controls its own transcription and is activated by various stress conditions, including heat and salt, as well as entry into stationary phase after either carbon or nitrogen starvation. We also present evidence that the product of the gene cotranscribed with rpoE2 negatively regulates RpoE2 activity, and we therefore propose that it plays the function of anti-sigma factor. By combining transcriptomic, bioinformatic, and quantitative reverse transcription-PCR analyses, we identified 44 RpoE2-controlled genes and predicted the number of RpoE2 targets to be higher. Strikingly, more than one-third of the 60 stress response genes identified in this study are RpoE2 targets. Interestingly, two genes encoding proteins with known functions in stress responses, namely, katC and rpoH2, as well as a second ECF-encoding gene, rpoE5, were found to be RpoE2 regulated. Altogether, these data suggest that RpoE2 is a major global regulator of the general stress response in S. meliloti. Despite these observations, and although this sigma factor is well conserved among alphaproteobacteria, no in vitro nor in planta phenotypic difference from the wild-type strain could be detected for rpoE2 mutants. This therefore suggests that other important actors in the general stress response have still to be identified in S. meliloti.


2007 ◽  
Vol 190 (3) ◽  
pp. 1027-1035 ◽  
Author(s):  
Benjamin Gourion ◽  
Anne Francez-Charlot ◽  
Julia A. Vorholt

ABSTRACTPhyR represents a novel alphaproteobacterial family of response regulators having a structure consisting of two domains; a predicted amino-terminal extracytoplasmic function (ECF) sigma factor-like domain and a carboxy-terminal receiver domain. PhyR was first described inMethylobacterium extorquensAM1, in which it has been shown to be essential for plant colonization, probably due to its suggested involvement in the regulation of a number of stress proteins. Here we investigated the PhyR regulon using microarray technology. We found that the PhyR regulon is rather large and that most of the 246 targets are under positive control. Mapping of transcriptional start sites revealed candidate promoters for PhyR-mediated regulation. One of these promoters, an ECF-type promoter, was identified upstream of one-third of the target genes by in silico analysis. Among the PhyR targets are genes predicted to be involved in multiple stress responses, includingkatE,osmC,htrA,dnaK,gloA,dps, anduvrA. The induction of these genes is consistent with our phenotypic analyses which revealed that PhyR is involved in resistance to heat shock and desiccation, as well as oxidative, UV, ethanol, and osmotic stresses, inM. extorquensAM1. The finding that PhyR is involved in the general stress response was further substantiated by the finding that carbon starvation induces protection against heat shock and that this protection is at least in part dependent on PhyR.


2001 ◽  
Vol 183 (24) ◽  
pp. 7318-7328 ◽  
Author(s):  
John D. Helmann ◽  
Ming Fang Winston Wu ◽  
Phil A. Kobel ◽  
Francisco-Javier Gamo ◽  
Michael Wilson ◽  
...  

ABSTRACT In response to heat stress, Bacillus subtilisactivates the transcription of well over 100 different genes. Many of these genes are members of a general stress response regulon controlled by the secondary sigma factor, ςB, while others are under control of the HrcA or CtsR heat shock regulators. We have used DNA microarrays to monitor the global transcriptional response to heat shock. We find strong induction of known ςB-dependent genes with a characteristic rapid induction followed by a return to near prestimulus levels. The HrcA and CtsR regulons are also induced, but with somewhat slower kinetics. Analysis of DNA sequences proximal to newly identified heat-induced genes leads us to propose ∼70 additional members of the ςB regulon. We have also identified numerous heat-induced genes that are not members of known heat shock regulons. Notably, we observe very strong induction of arginine biosynthesis and transport operons. Induction of several genes was confirmed by quantitative reverse transcriptase PCR. In addition, the transcriptional responses measured by microarray hybridization compare favorably with the numerous previous studies of heat shock in this organism. Since many different conditions elicit both specific and general stress responses, knowledge of the heat-induced general stress response reported here will be helpful for interpreting future microarray studies of other stress responses.


2021 ◽  
Vol 22 (8) ◽  
pp. 3900
Author(s):  
Rubén de de Dios ◽  
Eduardo Santero ◽  
Francisca Reyes-Ramírez

The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity. Here, we have clustered 55 ECF groups with experimentally studied representatives into two broad classes of stress responses. The remaining 102 groups still lack any mechanistic or functional insight, representing a myriad of systems yet to explore. In this work, we review the main features of ECFs and discuss the different mechanisms controlling their production and activity, and how they lead to a functional stress response. Finally, we focus in more detail on two well-characterized ECFs, for which the mechanisms to detect and respond to stress are complex and completely different: Escherichia coli RpoE, which is the best characterized ECF and whose structural and functional studies have provided key insights into the transcription initiation by ECF-RNAP holoenzymes, and the ECF15-type EcfG, the master regulator of the general stress response in Alphaproteobacteria.


2005 ◽  
Vol 187 (5) ◽  
pp. 1591-1603 ◽  
Author(s):  
Harald Weber ◽  
Tino Polen ◽  
Johanna Heuveling ◽  
Volker F. Wendisch ◽  
Regine Hengge

ABSTRACT The σS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, σS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of σS and that σS should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a σS consensus promoter in silico. Moreover, our results suggest that σS-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect σS and/or σ70 selectivity of many promoters. These observations indicate that certain modules of the σS-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with σ70 RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation.


2020 ◽  
Author(s):  
Madeline R. Barron ◽  
Roberto J. Cieza ◽  
David R. Hill ◽  
Sha Huang ◽  
Veda K. Yadagiri ◽  
...  

AbstractPluripotent stem-cell-derived human intestinal organoids (HIOs) are three-dimensional, multicellular structures that model a previously uncolonized, naïve intestinal epithelium in an in vitro system. We recently demonstrated that microinjection of the non-pathogenic Escherichia coli strain, ECOR2, into HIOs induced morphological and functional maturation of the HIO epithelium, including increased secretion of mucins and cationic antimicrobial peptides. In the current work, we use ECOR2 as a biological probe to investigate the bacterial response to colonization of the HIO lumen. In E. coli and other Gram-negative bacteria, adaptation to environmental stress is regulated by the general stress response sigma factor, RpoS. We generated an isogenic ∆rpoS ECOR2 mutant to compare challenges faced by a bacterium during colonization of the HIO lumen relative to the germ-free mouse intestine, which is currently the best available system for studying the initial establishment of bacterial populations within the gut. We demonstrate that loss of RpoS significantly decreases the ability of ECOR2 to colonize HIOs, though it does not prevent colonization of germ-free mice. Rather, the ∆rpoS ECOR2 exhibits a fitness defect in the germ-free mouse intestine only in the context of microbial competition. These results indicate that HIOs pose a differentially restrictive luminal environment to E. coli during colonization, thus increasing our understanding of the HIO model system as it pertains to studying the establishment of intestinal host-microbe symbioses.ImportanceTechnological advancements have and will continue to drive the adoption of organoid-based systems for investigating host-microbe interactions within the human intestinal ecosystem. Using E. coli deficient in the RpoS-mediated general stress response, we demonstrate that the type or severity of microbial stressors within the HIO lumen differ from those of the in vivo environment of the germ-free mouse gut. This study provides important insight into the nature of the HIO microenvironment from a microbiological standpoint.


Sign in / Sign up

Export Citation Format

Share Document