scholarly journals CHARACTERIZATION OF DOMINANT RESISTANCE TO COBALT CHLORIDE IN DICTYOSTELIUM DISCOIDEUM AND ITS USE IN PARASEXUAL GENETIC ANALYSIS

Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 37-47
Author(s):  
Keith L Williams

ABSTRACT Strains of Dictyostelium discoideum resistant to cobaltous chloride have been isolated at a frequency of approximately 10-6. The resistant strains have one of three phenotypes, recessive to wild type, dominant to wild type and dominant to wild type but requiring the presence of cobaltous chloride to maintain resistance. Strains carrying a dominant cobaltous chloride resistance mutation and a recessive growth temperature-sensitive mutation can be mixed with wild-type haploid lines and then subjected to selection so that only diploid lines survive. Differential sensitivity to cycloheximide has also been observed. Hypersensitivity to cycloheximide in combination with dominant cobaltous chloride resistance provides a means of selecting diploids without the use of temperature-sensitive mutations.

Development ◽  
1973 ◽  
Vol 29 (3) ◽  
pp. 647-661
Author(s):  
C. K. Leach ◽  
J. M. Ashworth ◽  
D. R. Garrod

The behaviour, during the multicellular phase of the life-cycle, of amoebae of Dictyostelium discoideum grown in different media is described. Amoebal populations were marked by growth-temperature-sensitive genetic lesions which do not interfere with developmental phenomena. The fate of cell populations was determined by measuring the relative number of mutant and wild-type cells at various stages in the life-cycle. Cells sort out during development in such a way that they may be ordered in a sequence in which those given early in the following list preferentially appear in the spore population when mixed with those given later in the list: cells grown in axenic medium + 86 mm glucose and harvested when in the exponential phase of growth; cells grown in axenic medium and harvested when in the exponential phase of growth; cells grown on bacteria and harvested when in the exponential phase of growth; cells grown in axenic medium + 86 mM glucose and harvested when in the stationary phase of growth. Chemotactic aggregation and grex migration are not essential for sorting-out to occur but, in the normal life-cycle, the cells of a grex formed from amoebae grown in different media have sorted out anteroposteriorly. The relationship between this sorting out behaviour and the mechanism of pattern formation in fruiting-body morphogenesis is discussed. Differences in density of the amoebae cannot account for the sorting out predispositions we observe.


2002 ◽  
Vol 46 (5) ◽  
pp. 1329-1335 ◽  
Author(s):  
Donald F. Smee ◽  
Robert W. Sidwell ◽  
Debbie Kefauver ◽  
Mike Bray ◽  
John W. Huggins

ABSTRACT Cidofovir {[(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine] [HPMPC]}-resistant forms of camelpox, cowpox, monkeypox, and vaccinia viruses were developed by prolonged passage in Vero 76 cells in the presence of drug. Eight- to 27-fold-higher concentrations of cidofovir were required to inhibit the resistant viruses than were needed to inhibit the wild-type (WT) viruses. Resistant viruses were characterized by determining their cross-resistance to other antiviral compounds, examining their different replication abilities in two cell lines, studying the biochemical basis of their drug resistance, and assessing the degrees of their virulence in mice. These viruses were cross resistant to cyclic HPMPC and, with the exception of vaccinia virus, to (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)adenine. Three of the four resistant cowpox and monkeypox viruses exhibited reduced abilities to infect and replicate in 3T3 cells compared to their abilities in Vero 76 cells. Compared to the WT virus polymers the resistant cowpox virus DNA polymerase was 8.5-fold less sensitive to inhibition by cidofovir diphosphate, the active form of the drug. Intracellular phosphorylation of [3H]cidofovir was not stimulated or inhibited by infection with resistant cowpox virus. In intranasally infected BALB/c mice, WT cowpox virus was 80-fold more virulent than the resistant virus. Cidofovir treatment (100 mg/kg of body weight, given one time only as early as 5 min after virus challenge) of a resistant cowpox virus infection could not protect mice from mortality. However, the drug prevented mortality in 80 to 100% of the mice treated with a single 100-mg/kg dose at 1, 2, 3, or 4 days after WT virus challenge. By application of these results to human orthopoxvirus infections, it is anticipated that resistant viruses may be untreatable with cidofovir but their virulence may be attenuated. Studies will need to be conducted with cidofovir-resistant monkeypox virus in monkeys to further support these hypotheses.


2015 ◽  
Vol 25 (6) ◽  
pp. 394-402 ◽  
Author(s):  
Taylor L. Fischer ◽  
Robert J. White ◽  
Katherine F.K. Mares ◽  
Devin E. Molnau ◽  
Justin J. Donato

<b><i>Background/Aims:</i></b> We previously identified the Triclo1 fosmid in a functional metagenomic selection for clones that increased triclosan tolerance in <i>Escherichia coli</i>. The active enzyme encoded by Triclo1 is ucFabV. Although ucFabV is homologous to FabV from other organisms, ucFabV contains substitutions at key positions that would predict differences in substrate binding. Therefore, a detailed characterization of ucFabV was conducted to link its biochemical activity to its ability to confer reduced triclosan sensitivity. <b><i>Methods:</i></b> ucFabV and a catalytic mutant were purified and used to reduce crotonoyl-CoA in vitro. The mutant and wild-type enzymes were introduced into <i>E. coli</i>, and their ability to confer triclosan tolerance as well as suppress a temperature-sensitive mutant of FabI were measured. <b><i>Results:</i></b> Purified ucFabV, but not the mutant, reduced crotonoyl-CoA in vitro. The wild-type enzyme confers increased triclosan tolerance when introduced into <i>E. coli</i>, whereas the mutant remained susceptible to triclosan<i>. </i>Additionally, wild-type ucFabV, but not the mutant, functionally replaced FabI within living cells. <b><i>Conclusion:</i></b> ucFabV confers increased tolerance through its function as an enoyl-ACP reductase. Furthermore, ucFabV is capable of restoring viability in the presence of compromised FabI, suggesting ucFabV is likely facilitating an alternate step within fatty acid synthesis, bypassing FabI inhibition.


Genetics ◽  
1988 ◽  
Vol 119 (2) ◽  
pp. 303-315
Author(s):  
J H McCusker ◽  
J E Haber

Abstract We describe the isolation and preliminary characterization of a set of pleiotropic mutations resistant to the minimum inhibitory concentration of cycloheximide and screened for ts (temperature-sensitive) growth. These mutations fall into 22 complementation groups of cycloheximide resistant ts lethal mutations (crl). None of the crl mutations appears to be allelic with previously isolated mutations. Fifteen of the CRL loci have been mapped. At the nonpermissive temperature (37 degrees), these mutants arrest late in the cell cycle after several cell divisions. Half of these mutants are also unable to grow at very low temperatures (5 degrees). Although mutants from all of the 22 complementation groups exhibit similar temperature-sensitive phenotypes, an extragenic suppressor of the ts lethality of crl3 does not relieve the ts lethality of most other crl mutants. A second suppressor mutation allows crl10, crl12, and crl14 to grow at 37 degrees but does not suppress the ts lethality of the remaining crl mutants. We also describe two new methods for the enrichment of auxotrophic mutations from a wild-type yeast strain.


1996 ◽  
Vol 7 (9) ◽  
pp. 1405-1417 ◽  
Author(s):  
B Dey ◽  
J J Lightbody ◽  
F Boschelli

Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form.


2005 ◽  
Vol 49 (10) ◽  
pp. 4068-4074 ◽  
Author(s):  
Caroline Lavender ◽  
Maria Globan ◽  
Aina Sievers ◽  
Helen Billman-Jacobe ◽  
Janet Fyfe

ABSTRACT Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA −15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA −15 C-to-T mutation clustered with any one genotypic group, but that the −15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.


2000 ◽  
Vol 74 (7) ◽  
pp. 3001-3010 ◽  
Author(s):  
Javier Martín ◽  
Glynis Dunn ◽  
Robin Hull ◽  
Varsha Patel ◽  
Philip D. Minor

ABSTRACT A 20-year-old female hypogammaglobulinemic patient received monotypic Sabin 3 vaccine in 1962. The patient excreted type 3 poliovirus for a period of 637 days without developing any symptoms of poliomyelitis, after which excretion appeared to have ceased spontaneously. The evolution of Sabin 3 throughout the entire period of virus excretion was studied by characterization of seven sequential isolates from the patient. The isolates were analyzed in terms of their antigenic properties, virulence, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 3 vaccine. The isolates followed a main lineage of evolution with a rate of nucleotide substitution that was very similar to that estimated for wild-type poliovirus during person-to-person transmission. There was a delay in the appearance of antigenic variants compared to sequential type 3 isolates from healthy vaccines, which could be one of the possible explanations for the long-term excretion of virus from the patient. The distribution of mutations in the isolates identified regions of the virus possibly involved in adaptation for growth in the human gut and virus persistence. None of the isolates showed a full reversion of the attenuated and temperature-sensitive phenotypes of Sabin 3. Information of this sort will help in the assessment of the risk of spread of virulent polioviruses from long-term excretors and in the design of therapies to stop long-term excretion. This will make an important contribution to the decision-making process on when to stop vaccination once wild poliovirus has been eradicated.


Genetics ◽  
1978 ◽  
Vol 88 (2) ◽  
pp. 285-303 ◽  
Author(s):  
Samuel Ward ◽  
Johji Miwa

ABSTRACT The isolation and characterization of three Caenorhabditis elegans temperature-sensitive mutants that are defective at fertilization are described. All three are alleles of the gene fer-1. At the restrictive temperature of 25°, mutant hermaphrodites make sperm and oocytes in normal numbers. No oocytes are fertilized, although they pass through the spermatheca and uterus normally. The oocytes can be fertilized by sperm transferred by wild-type males, indicating that the mutant defect is in the sperm. The temperature-sensitive period for the mutants coincides with spermatogenesis. Sperm made by mutants at 25° cannot be distinguished from wild-type sperm by light microscopy. The sperm do contact oocytes in mutant hermaphrodites, but do not fertilize. Mutant sperm appear to be nonmotile. Mutant males are also sterile when grown at 25°. They transfer normal numbers of sperm to hermaphrodites at mating, but these sperm fail to migrate to the spermatheca and are infertile. The phenotype of these mutants is consistent with a primary defect in sperm motility, but the cause of this defect is not known.


2010 ◽  
Vol 76 (24) ◽  
pp. 8231-8238 ◽  
Author(s):  
Driss Elhanafi ◽  
Vikrant Dutta ◽  
Sophia Kathariou

ABSTRACT Quaternary ammonium compounds such as benzalkonium chloride (BC) are widely used as disinfectants in both food processing and medical environments. BC-resistant strains of Listeria monocytogenes have been implicated in multistate outbreaks of listeriosis and have been frequently isolated from food processing plants. However, the genetic basis for BC resistance in L. monocytogenes remains poorly understood. In this study, we have characterized a plasmid (pLM80)-associated BC resistance cassette in L. monocytogenes H7550, a strain implicated in the 1998-1999 multistate outbreak involving contaminated hot dogs. The BC resistance cassette (bcrABC) restored resistance to BC (MIC, 40 μg/ml) in a plasmid-cured derivative of H7550. All three genes of the cassette were essential for imparting BC resistance. The transcription of H7550 BC resistance genes was increased under sublethal (10 μg/ml) BC exposure and was higher at reduced temperatures (4, 8, or 25°C) than at 37°C. The level of transcription was higher at 10 μg/ml than at 20 or 40 μg/ml. In silico analysis suggested that the BC resistance cassette was harbored by an IS1216 composite transposon along with other genes whose functions are yet to be determined. The findings from this study will further our understanding of the adaptations of this organism to disinfectants such as BC and may contribute to the elucidation of possible BC resistance dissemination in L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document