scholarly journals Genetic Characterization of Plasmid-Associated Benzalkonium Chloride Resistance Determinants in a Listeria monocytogenes Strain from the 1998-1999 Outbreak

2010 ◽  
Vol 76 (24) ◽  
pp. 8231-8238 ◽  
Author(s):  
Driss Elhanafi ◽  
Vikrant Dutta ◽  
Sophia Kathariou

ABSTRACT Quaternary ammonium compounds such as benzalkonium chloride (BC) are widely used as disinfectants in both food processing and medical environments. BC-resistant strains of Listeria monocytogenes have been implicated in multistate outbreaks of listeriosis and have been frequently isolated from food processing plants. However, the genetic basis for BC resistance in L. monocytogenes remains poorly understood. In this study, we have characterized a plasmid (pLM80)-associated BC resistance cassette in L. monocytogenes H7550, a strain implicated in the 1998-1999 multistate outbreak involving contaminated hot dogs. The BC resistance cassette (bcrABC) restored resistance to BC (MIC, 40 μg/ml) in a plasmid-cured derivative of H7550. All three genes of the cassette were essential for imparting BC resistance. The transcription of H7550 BC resistance genes was increased under sublethal (10 μg/ml) BC exposure and was higher at reduced temperatures (4, 8, or 25°C) than at 37°C. The level of transcription was higher at 10 μg/ml than at 20 or 40 μg/ml. In silico analysis suggested that the BC resistance cassette was harbored by an IS1216 composite transposon along with other genes whose functions are yet to be determined. The findings from this study will further our understanding of the adaptations of this organism to disinfectants such as BC and may contribute to the elucidation of possible BC resistance dissemination in L. monocytogenes.

2013 ◽  
Vol 79 (19) ◽  
pp. 6067-6074 ◽  
Author(s):  
Vikrant Dutta ◽  
Driss Elhanafi ◽  
Sophia Kathariou

ABSTRACTAnalysis of a panel of 116Listeria monocytogenesstrains of diverse serotypes and sources (clinical, environment of food processing plants, and food) revealed that all but one of the 71 benzalkonium chloride-resistant (BCr) isolates harboredbcrABC, previously identified on a large plasmid (pLM80) of the 1998-1999 hot dog outbreak strain H7858. In contrast,bcrABCwas not detected among BC-susceptible (BCs) isolates. ThebcrABCsequences were highly conserved among strains of different serotypes, but variability was noted in sequences flankingbcrABC. The majority of the BCrisolates had either the pLM80-type of organization of thebcrABCregion or appeared to harborbcrABCon the chromosome, adjacent to novel sequences. Transcription ofbcrABCwas induced by BC (10 μg/ml) in strains of different serotypes and diversebcrABCregion organization. These findings reveal widespread dissemination ofbcrABCacross BCrL. monocytogenesstrains regardless of serotype and source, while also suggesting possible mechanisms ofbcrABCdissemination acrossL. monocytogenesgenomes.


2008 ◽  
Vol 74 (5) ◽  
pp. 1464-1468 ◽  
Author(s):  
S. Mullapudi ◽  
R. M. Siletzky ◽  
S. Kathariou

ABSTRACT The resistance of Listeria monocytogenes to cadmium and arsenic has been used extensively for strain subtyping. However, limited information is available on the prevalence of such resistance among isolates from the environment of food-processing plants. In addition, it is not known whether the resistance of such isolates to heavy metals may correlate with resistance to quaternary ammonium compounds extensively used as disinfectants in the food-processing industry. In this study, we characterized 192 L. monocytogenes isolates (123 putative strains) from the environment of turkey-processing plants in the United States for resistance to cadmium and arsenic and to the quaternary ammonium disinfectant benzalkonium chloride (BC). Resistance to cadmium was significantly more prevalent among strains of serotypes 1/2a (or 3a) and 1/2b (or 3b) (83% and 74%, respectively) than among strains of the serotype 4b complex (19%). Resistance to BC was encountered among 60% and 51% of the serotype 1/2a (or 3a) and 1/2b (or 3b) strains, respectively, and among 7% of the strains of the serotype 4b complex. All BC-resistant strains were also resistant to cadmium, although the reverse was not always the case. In contrast, no correlation was found between BC resistance and resistance to arsenic, which overall was low (6%). Our findings suggest that the processing environment of turkey-processing plants may constitute a reservoir for L. monocytogenes harboring resistance to cadmium and to BC and raise the possibility of common genetic elements or mechanisms mediating resistance to quaternary ammonium disinfectants and to cadmium in L. monocytogenes.


2015 ◽  
Vol 82 (1) ◽  
pp. 308-317 ◽  
Author(s):  
Sagrario Ortiz ◽  
Victoria López-Alonso ◽  
Pablo Rodríguez ◽  
Joaquín V. Martínez-Suárez

ABSTRACTThe aim of this study was to investigate the basis of the putative persistence ofListeria monocytogenesin a new industrial facility dedicated to the processing of ready-to-eat (RTE) Iberian pork products. Quaternary ammonium compounds, which included benzalkonium chloride (BAC), were repeatedly used as surface disinfectants in the processing plant. Clean and disinfected surfaces were sampled to evaluate if resistance to disinfectants was associated with persistence. Of the 14 isolates obtained from product contact and non-product contact surfaces, only five different pulsed-field gel electrophoresis (PFGE) types were identified during the 27-month study period. Two of these PFGE types (S1 and S10-1) were previously identified to be persistent and BAC-resistant (BACr) strains in a geographically separate slaughterhouse belonging to the same company. The remaining three PFGE types, which were first identified in this study, were also BACr. Whole-genome sequencing andin silicomultilocus sequence typing (MLST) analysis of five BACrisolates of the different PFGE types identified in this study showed that the isolate of the S1 PFGE type belonged to MLST sequence type 31 (ST31), a low-virulence type characterized by mutations in theinlAandprfAgenes. The isolates of the remaining four PFGE types were found to belong to MLST ST121, a persistent type that has been isolated in several countries. The ST121 strains contained the BAC resistance transposon Tn6188. The disinfection-resistantL. monocytogenespopulation in this RTE pork product plant comprised two distinct genotypes with different multidrug resistance phenotypes. This work offers insight into theL. monocytogenessubtypes associated with persistence in food processing environments.


2019 ◽  
Vol 82 (11) ◽  
pp. 1922-1930 ◽  
Author(s):  
BEATRIZ MANSO ◽  
BEATRIZ MELERO ◽  
BEATRIX STESSL ◽  
ISABEL FERNÁNDEZ-NATAL ◽  
ISABEL JAIME ◽  
...  

ABSTRACT We report the characterization of 15 Listeria monocytogenes strains isolated from various food processing plants by multivirulence locus sequence typing to determine virulence types (VTs) and epidemic clones. Molecular mechanisms involved in adaptation to food processing environments and related to virulence were also studied. Phenotypic behaviors associated with various antimicrobials, biofilm formations, and invasiveness were assessed. There were 11 VTs among the 15 L. monocytogenes strains. Strains belonging to six VTs were stress survival islet 1 (SSI-1) and one strain of VT94 was SSI-2. Tn6188 was found in VT6 and VT94 strains, and bcrABC cassette genes were identified in VT21, VT60, and VT63 strains. Only one strain, in VT20, showed llxS, whereas a full-size inlA was detected in strains belonging to VT8, VT20, VT21, and VT63. VT10, VT20, VT21, VT60, and VT63 strains were the most tolerant to studied disinfectants. A VT6 strain showed the strongest biofilm formation ability in polyvinyl chloride, and strains belonging to VT10, VT11, VT20, and VT94 had moderate abilities. Antimicrobial sensitivity tests showed that all the L. monocytogenes strains were multidrug resistant. F tests revealed that only strains of VT10, VT60, and VT94 were significantly noninvasive (P < 0.05) in Caco-2 cells. Our findings illustrate how L. monocytogenes isolates exploit diverse mechanisms to adapt to adverse conditions. Consequently, detailed characterization of L. monocytogenes isolates is required for comprehensive elimination of this pathogenic bacterium in food processing environments.


2011 ◽  
Vol 77 (18) ◽  
pp. 6559-6569 ◽  
Author(s):  
Edward M. Fox ◽  
Nola Leonard ◽  
Kieran Jordan

ABSTRACTThis study aimed to characterize physiological differences between persistent and presumed nonpersistentListeria monocytogenesstrains isolated at processing facilities and to investigate the molecular basis for this by transcriptomic sequencing. Full metabolic profiles of two strains, one persistent and one nonpersistent, were initially screened using Biolog's Phenotype MicroArray (PM) technology. Based on these results, in which major differences from selected antimicrobial agents were detected, another persistent strain and two nonpersistent strains were characterized using two antimicrobial PMs. Resistance to quaternary ammonium compounds (QACs) was shown to be higher among persistent strains. Growth of persistent and nonpersistent strains in various concentrations of the QACs benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) was determined. Transcriptomic sequencing of a persistent and a presumed nonpersistent strain was performed to compare gene expression among these strains in the presence and absence of BZT. Two strains, designated “frequent persisters” because they were the most frequently isolated at the processing facility, showed overall higher resistance to QACs. Transcriptome analysis showed that BZT induced a complex peptidoglycan (PG) biosynthesis response, which may play a key role in BZT resistance. Comparison of persistent and nonpersistent strains indicated that transcription of many genes was upregulated among persistent strains. This included three gene operons:pdu,cob-cbi, andeut. These genes may play a role in the persistence ofL. monocytogenesoutside the human host.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tereza Gelbicova ◽  
Martina Florianova ◽  
Lucie Hluchanova ◽  
Alžběta Kalova ◽  
Kristýna Korena ◽  
...  

Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.


2014 ◽  
Vol 63 (5) ◽  
pp. 735-741 ◽  
Author(s):  
Gui-Xin He ◽  
Michael Landry ◽  
Huizhong Chen ◽  
Conner Thorpe ◽  
Dennis Walsh ◽  
...  

We isolated a total of 653 strains from 64 community environmental samples in Massachusetts, USA. Among these isolates, 9.65 % (63 strains) were benzalkonium chloride (BC)-resistant staphylococci. All BC-resistant strains were collected from surfaces upon which antibacterial wipes or antibacterial sprays containing 0.02–0.12 % BC had frequently been used in the fitness centres. However, isolates from surfaces upon which antibacterial wipes or antibacterial sprays had not been used were all sensitive to BC. All BC-resistant strains were also resistant to erythromycin, penicillin and ampicillin. In addition, 51 strains showed resistance to cetyltrimethylammonium bromide (CTAB), 15 strains showed resistance to chloramphenicol, 12 strains showed resistance to ciprofloxacin and four strains showed resistance to meticillin. Resistance gene analysis demonstrated that 41 strains contained qacA/B, 30 strains had qacC, 25 strains contained qacG, 16 strains had qacH and eight strains contained qacJ. These data indicate that application of BC is associated with environmental staphylococcal antimicrobial resistance.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 250 ◽  
Author(s):  
Daniel Rodríguez-Campos ◽  
Cristina Rodríguez-Melcón ◽  
Carlos Alonso-Calleja ◽  
Rosa Capita

Some strains of Listeria monocytogenes can persist in food-processing environments, increasing the likelihood of the contamination of foodstuffs. To identify traits that contribute to bacterial persistence, a selection of persistent and sporadic L. monocytogenes isolates from a poultry-processing facility was investigated for biofilm-forming ability (crystal violet assay). The susceptibility of sessile cells to treatments (five minutes) with sodium hypochlorite having 10% active chlorine (SHY: 10,000 ppm, 25,000 ppm, and 50,000 ppm) and benzalkonium chloride (BZK: 2500 ppm, 10,000 ppm, and 25,000 ppm) was also studied. All isolates exhibited biofilm formation on polystyrene. Persistent strains showed larger (p < 0.001) biofilm formation (OD580 = 0.301 ± 0.097) than sporadic strains (OD580 = 0.188 ± 0.082). A greater susceptibility to disinfectants was observed for biofilms of persistent strains than for those of sporadic strains. The application of SHY reduced biofilms only for persistent strains. BZK increased OD580 in persistent strains (2500 ppm) and in sporadic strains (all concentrations). These results indicate that the use of BZK at the concentrations tested could represent a public health risk. Findings in this work suggest a link between persistence and biofilm formation, but do not support a relationship between persistence and the resistance of sessile cells to disinfectants.


Sign in / Sign up

Export Citation Format

Share Document