NATURAL SELECTION OPPOSING ARTIFICIAL SELECTION: A TWO-LOCUS DETERMINISTIC SIMULATION

Genetics ◽  
1981 ◽  
Vol 98 (1) ◽  
pp. 231-238
Author(s):  
Francis Minvielle

ABSTRACT A two-locus, two-allele metric trait was submitted to artificial truncation selection and to three types of opposing natural selection (two-locus extensions of directional selection, overdominance and underdominance) by numerical simulation in a large random-mating population. Limits to selection were generally reached by generation 100. Intermediate selection plateaus were found, with minor genes, for all three modes of opposing natural selection, but they were least frequent with underdominance. Multiple outcomes were common. In particular, fixation of the genotype favored by artificial selection was often associated with fixation of another genotype and/or with a central equilibrium; the end point actually reached depended on the genetic starting point of the simulation. In general, when the alleles favored by truncation selection were combined (positive linkage disequilibrium) in the base population, or when the trait was determined by major genes, artificial selection would prevail. Limitations inherent to this type of work are discussed, and possible avenues for further work on the antagonism between artificial and natural selection are proposed.

Genetics ◽  
1980 ◽  
Vol 94 (4) ◽  
pp. 989-1000
Author(s):  
Francis Minvielle

ABSTRACT A quantitative character controlled at one locus with two alleles was submitted to artificial (mass) selection and to three modes of opposing natural selection (directional selection, overdominance and underdominance) in a large random-mating population. The selection response and the limits of the selective process were studied by deterministic simulation. The lifetime of the process was generally between 20 and 100 generations and did not appear to depend on the mode of natural selection. However, depending on the values of the parameters (initial gene frequency, selection intensity, ratio of the effect of the gene to the environmental standard deviation, fitness values) the following outcomes of selection were observed: fixation of the allele favored by artificial selection, stable nontrivial equilibrium, unstable equilibrium and loss of the allele favored by artificial selection. Finally, the results of the simulation were compared to the results of selection experiments.


1978 ◽  
Vol 31 (3) ◽  
pp. 255-264 ◽  
Author(s):  
Alan Robertson

SUMMARYHomozygotes for recessive visible genes have often been discovered in lines under artificial selection, sometimes many generations from the start. As a help in the interpretation of this phenomenon, the distribution of the time to first detection as a homozygote of a recessive gene occurring only once in the initial generation has been obtained. Alternatively the results may be considered as referring to the time of first appearance as a homozygote of a new mutation occurring in a finite population. For a monoecious random mating population of size N with selfing permitted, the mean time to detection is very close to 2N⅓ over a range of N from 1 to 500 with a coefficient of variation of roughly 2/3 and a 95% upper limit about 2·5 times the mean. If selfing is prohibited, the mean time is increased by a little over 1 generation. The treatment is extended to cover the effects of artificial selection in favour of the heterozygote, of the frequency of occurrence in the initial generation and of the examination of more individuals each generation than are used as parents.


Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1179-1189 ◽  
Author(s):  
Molly Przeworski

Abstract In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequency alleles drift to fixation and no longer contribute to polymorphism, while linkage disequilibrium is broken down by recombination. As a result, loci chosen without independent evidence of recent selection are not expected to exhibit either of these features, even if they have been affected by numerous sweeps in their genealogical history. How then can we explain the patterns in the data? One possibility is population structure, with unequal sampling from different subpopulations. Alternatively, positive selection may not operate as is commonly modeled. In particular, the rate of fixation of advantageous mutations may have increased in the recent past.


1966 ◽  
Vol 8 (3) ◽  
pp. 361-375 ◽  
Author(s):  
R. C. Roberts

1. The effects of long-continued selection for body weight in two lines of mice, one large and one small, are described.2. The large line showed a sharp increase in weight after remaining at an apparent limit for twenty generations. A rare combinational event is suggested as the most likely explanation.3. Reversed and relaxed selection from the large line at the limit failed to yield any response. This indicates that effectively, the additive genetic variance in this line had been exhausted.4. In contrast, the small line at the limit regressed slightly towards the base population when selection was relaxed. Reversed selection yielded a ready response until a new limit was apparently reached. Loci affecting body weight in this line had therefore not been fixed by selection.5. Natural selection, operating on viability between conception and the time when the selection was made, appears to explain best the lack of fixation in the small line.6. Attention is drawn to the necessity of more experimental work to elucidate the genetic nature of the limits to artificial selection.


Genetics ◽  
1983 ◽  
Vol 104 (1) ◽  
pp. 191-209
Author(s):  
Michael Turelli ◽  
Lev R Ginzburg

ABSTRACT Natural selection influences not only gamete frequencies in populations but also the multilocus fitness structures associated with segregating gametes. In particular, only certain patterns of multilocus fitnesses are consistent with the maintenance of stable multilocus polymorphisms. This paper offers support for the proposition that, at stable, viability-maintained, multilocus polymorphisms, the fitness of a genotype tends to increase with the number of heterozygous loci it contains. Average fitness always increases with heterozygosity at stable product equilibria (i.e., those without linkage disequilibrium) maintained by either additive or multiplicative fitness schemes. Simulations suggest that it "generally" increases for arbitrary fitness schemes. The empirical literature correlating allozyme heterozygosity with fitness-correlated traits is discussed in the light of these and other theoretical results.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 457-467 ◽  
Author(s):  
Z W Luo ◽  
S H Tao ◽  
Z-B Zeng

Abstract Three approaches are proposed in this study for detecting or estimating linkage disequilibrium between a polymorphic marker locus and a locus affecting quantitative genetic variation using the sample from random mating populations. It is shown that the disequilibrium over a wide range of circumstances may be detected with a power of 80% by using phenotypic records and marker genotypes of a few hundred individuals. Comparison of ANOVA and regression methods in this article to the transmission disequilibrium test (TDT) shows that, given the genetic variance explained by the trait locus, the power of TDT depends on the trait allele frequency, whereas the power of ANOVA and regression analyses is relatively independent from the allelic frequency. The TDT method is more powerful when the trait allele frequency is low, but much less powerful when it is high. The likelihood analysis provides reliable estimation of the model parameters when the QTL variance is at least 10% of the phenotypic variance and the sample size of a few hundred is used. Potential use of these estimates in mapping the trait locus is also discussed.


2021 ◽  
pp. 1-15
Author(s):  
Luis Sánchez

Abstract In Descent of Man, Charles Darwin noted the impact of political institutions on natural selection. He thought that institutions such as asylums or hospitals may deter natural selection; however, he did not reach a decisive answer. Questions remain as to whether the selective impacts of political institutions, which in Darwin’s terms may be referred to as “artificial selection,” are compatible with natural selection, and if so, to what extent. This essay argues that currently there appears to be an essential mismatch between nature and political institutions. Unfitted institutions put exogenous and disproportionate pressures on living beings. This creates consequences for what is postulated as the condition of basic equivalence, which allows species and individuals to enjoy similar chances of survival under natural circumstances. Thus, contrary to Darwin’s expectations, it is sustained that assumed natural selection is not discouraged but becomes exacerbated by political institutions. In such conditions, selection becomes primarily artificial and perhaps mainly political, with consequences for species’ evolutionary future.


Genetics ◽  
1987 ◽  
Vol 117 (1) ◽  
pp. 149-153
Author(s):  
Curtis Strobeck

ABSTRACT Unbiased estimates of θ = 4Nµ in a random mating population can be based on either the number of alleles or the average number of nucleotide differences in a sample. However, if there is population structure and the sample is drawn from a single subpopulation, these two estimates of θ behave differently. The expected number of alleles in a sample is an increasing function of the migration rates, whereas the expected average number of nucleotide differences is shown to be independent of the migration rates and equal to 4N  Tµ for a general model of population structure which includes both the island model and the circular stepping-stone model. This contrast in the behavior of these two estimates of θ is used as the basis of a test for population subdivision. Using a Monte-Carlo simulation developed so that independent samples from a single subpopulation could be obtained quickly, this test is shown to be a useful method to determine if there is population subdivision.


1976 ◽  
Vol 8 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Aloke Kumar Ghosh

A population–biological study of the Kota of the Nilgiri Hills was undertaken between May 1966 and January 1968. This paper discusses the demographic structure of the tribe and its genetic implications.The Kota is a small tribe of 1203 individuals distributed in only seven villages; it is an isolated population with a low rate of fertility and a high rate of infant mortality. The Kota is not a random mating population. The rate of consanguineous marriages is high and the coefficient of inbreeding is almost equal to the highest recorded value. Besides cousin marriages, marriage within the village is very much preferred. The admixture rate (0·29%) among the Kota is very low. The effective population size is only 28·87% of the total population. The coefficient of breeding isolation is 1·01, which indicates that genetic drift may produce important differentiation in this population. The data show that selection is acting with moderate intensity in this population.


Sign in / Sign up

Export Citation Format

Share Document