Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast

Genetics ◽  
2021 ◽  
Author(s):  
Riddhiman K Garge ◽  
Hye Ji Cha ◽  
Chanjae Lee ◽  
Jimmy D Gollihar ◽  
Aashiq H Kachroo ◽  
...  

Abstract Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.

2020 ◽  
Author(s):  
Riddhiman K. Garge ◽  
Hye Ji Cha ◽  
Chanjae Lee ◽  
Jimmy D. Gollihar ◽  
Aashiq H. Kachroo ◽  
...  

ABSTRACTThiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ’s molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.


Blood ◽  
2011 ◽  
Vol 117 (21) ◽  
pp. 5692-5700 ◽  
Author(s):  
Ajita V. Singh ◽  
Madhavi Bandi ◽  
Noopur Raje ◽  
Paul Richardson ◽  
Michael A. Palladino ◽  
...  

Abstract Previous studies have established a role of vascular-disrupting agents as anti- cancer agents. Plinabulin is a novel vascular-disrupting agent that exhibits potent interruption of tumor blood flow because of the disruption of tumor vascular endothelial cells, resulting in tumor necrosis. In addition, plinabulin exerts a direct action on tumor cells, resulting in apoptosis. In the present study, we examined the anti–multiple myeloma (MM) activity of plinabulin. We show that low concentrations of plinabulin exhibit a potent antiangiogenic action on vascular endothelial cells. Importantly, plinabulin also induces apoptotic cell death in MM cell lines and tumor cells from patients with MM, associated with mitotic growth arrest. Plinabulin-induced apoptosis is mediated through activation of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase cleavage. Moreover, plinabulin triggered phosphorylation of stress response protein JNK, as a primary target, whereas blockade of JNK with a biochemical inhibitor or small interfering RNA strategy abrogated plinabulin-induced mitotic block or MM cell death. Finally, in vivo studies show that plinabulin was well tolerated and significantly inhibited tumor growth and prolonged survival in a human MM.1S plasmacytoma murine xenograft model. Our study therefore provides the rationale for clinical evaluation of plinabulin to improve patient outcome in MM.


Blood ◽  
2010 ◽  
Vol 116 (9) ◽  
pp. 1539-1547 ◽  
Author(s):  
Gerard J. Madlambayan ◽  
Amy M. Meacham ◽  
Koji Hosaka ◽  
Saad Mir ◽  
Marda Jorgensen ◽  
...  

Acute myelogenous leukemias (AMLs) and endothelial cells depend on each other for survival and proliferation. Monotherapy antivascular strategies such as targeting vascular endothelial growth factor (VEGF) has limited efficacy in treating AML. Thus, in search of a multitarget antivascular treatment strategy for AML, we tested a novel vascular disrupting agent, OXi4503, alone and in combination with the anti-VEGF antibody, bevacizumab. Using xenotransplant animal models, OXi4503 treatment of human AML chloromas led to vascular disruption in leukemia cores that displayed increased leukemia cell apoptosis. However, viable rims of leukemia cells remained and were richly vascular with increased VEGF-A expression. To target this peripheral reactive angiogenesis, bevacizumab was combined with OXi4503 and abrogated viable vascular rims, thereby leading to enhanced leukemia regression. In a systemic model of primary human AML, OXi4503 regressed leukemia engraftment alone and in combination with bevacizumab. Differences in blood vessel density alone could not account for the observed regression, suggesting that OXi4503 also exhibited direct cytotoxic effects on leukemia cells. In vitro analyses confirmed this targeted effect, which was mediated by the production of reactive oxygen species and resulted in apoptosis. Together, these data show that OXi4503 alone is capable of regressing AML by a multitargeted mechanism and that the addition of bevacizumab mitigates reactive angiogenesis.


2021 ◽  
Vol 23 (1) ◽  
pp. 448
Author(s):  
Keisuke Ito ◽  
Tomoya Fujie ◽  
Masahiro Shimomura ◽  
Tsuyoshi Nakano ◽  
Chika Yamamoto ◽  
...  

Vascular endothelial cells cover the luminal surface of blood vessels in a monolayer and play a role in the regulation of vascular functions, such as the blood coagulation-fibrinolytic system. When the monolayer is severely or repeatedly injured, platelets aggregate at the damaged site and release transforming growth factor (TGF)-β1 in large quantities from their α-granules. Cadmium is a heavy metal that is toxic to various organs, including the kidneys, bones, liver, and blood vessels. Our previous study showed that the expression level of Zrt/Irt-related protein 8 (ZIP8), a metal transporter that transports cadmium from the extracellular fluid into the cytosol, is a crucial factor in determining the sensitivity of vascular endothelial cells to cadmium cytotoxicity. In the present study, TGF-β1 was discovered to potentiate cadmium-induced cytotoxicity by increasing the intracellular accumulation of cadmium in cells. Additionally, TGF-β1 induced the expression of ZIP8 via the activin receptor-like kinase 5-Smad2/3 signaling pathways; Smad3-mediated induction of ZIP8 was associated with or without p38 mitogen-activated protein kinase (MAPK). These results suggest that the cytotoxicity of cadmium to vascular endothelial cells increases when damaged endothelial monolayers that are highly exposed to TGF-β1 are repaired.


2002 ◽  
Vol 282 (2) ◽  
pp. C289-C301 ◽  
Author(s):  
Lisa M. Schwiebert ◽  
William C. Rice ◽  
Brian A. Kudlow ◽  
Amanda L. Taylor ◽  
Erik M. Schwiebert

ATP and its metabolites regulate vascular tone; however, the sources of the ATP released in vascular beds are ill defined. As such, we tested the hypothesis that all limbs of an extracellular purinergic signaling system are present in vascular endothelial cells: ATP release, ATP receptors, and ATP receptor-triggered signal transduction. Primary cultures of human endothelial cells derived from multiple blood vessels were grown as monolayers and studied using a bioluminescence detection assay for ATP released into the medium. ATP is released constitutively and exclusively across the apical membrane under basal conditions. Hypotonic challenge or the calcium agonists ionomycin and thapsigargin stimulate ATP release in a reversible and regulated manner. To assess expression of P2X purinergic receptor channel subtypes (P2XRs), we performed degenerate RT-PCR, sequencing of the degenerate P2XR product, and immunoblotting with P2XR subtype-specific antibodies. Results revealed that P2X4and P2X5are expressed abundantly by endothelial cell primary cultures derived from multiple blood vessels. Together, these results suggest that components of an autocrine purinergic signaling loop exist in the endothelial cell microvasculature that may allow for “self-regulation” of endothelial cell function and modulation of vascular tone.


Author(s):  
Maoxian Wang

Cystathionine gamma-lyase (CSE) is one of the essential H2S-producing enzymes, and it regulates diverse functions in connection with cardiovascular function. It is crucial how exogenous H2S regulates CSE expression of the vascular endothelial cell during hypoxia. We examined the transcription and expression of CSE in HUVECs regulated by exogenous H2S with 100 μM during hypoxia by Luciferase assay, Western blotting, and quantitative RT-qPCR. Exogenous H2S influenced on the promoter activity of CSE in HUVECs during hypoxia. The effects of 100 μM H2S on CSE mRNA expression in HUVECs is decreased compared with 0 μM H2S. The consequences of 100 μM H2S on the expression level of CSE protein in HUVECs at two h of hypoxia is reduced compared with 0 μM H2S. These findings suggest that vascular endothelial cells can respond to the signals of hypoxia in the blood, and can respond to changes in H2S concentration in the blood, thus affect the blood vessels themselves.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3924
Author(s):  
Alina Drzyzga ◽  
Tomasz Cichoń ◽  
Justyna Czapla ◽  
Magdalena Jarosz-Biej ◽  
Ewelina Pilny ◽  
...  

Vascular disrupting agents (VDAs), such as DMXAA, effectively destroy tumor blood vessels and cause the formation of large areas of necrosis in the central parts of the tumors. However, the use of VDAs is associated with hypoxia activation and residues of rim cells on the edge of the tumor that are responsible for tumor regrowth. The aim of the study was to combine DMXAA with radiotherapy (brachytherapy) and find the appropriate administration sequence to obtain the maximum synergistic therapeutic effect. We show that the combination in which tumors were irradiated prior to VDAs administration is more effective in murine melanoma growth inhibition than in either of the agents individually or in reverse combination. For the first time, the significance of immune cells’ activation in such a combination is demonstrated. The inhibition of tumor growth is linked to the reduction of tumor blood vessels, the increased infiltration of CD8+ cytotoxic T lymphocytes and NK cells and the polarization of macrophages to the cytotoxic M1 phenotype. The reverse combination of therapeutic agents showed no therapeutic effect and even abolished the effect of DMXAA. The combination of brachytherapy and vascular disrupting agent effectively inhibits the growth of melanoma tumors but requires careful planning of the sequence of administration of the agents.


1975 ◽  
Author(s):  
A. L. Bloom ◽  
J. C. Giddings ◽  
S. A. M. Shearn

Rabbit antisera to factors II, V, VIII (related protein), X, XI, fibrinogen and fragment D have been used to localise these factors in normal blood vessels and platelets by an indirect fluorescent antiglobulin technique. Localisation of factors V and VIII (RP) confined, to the endothelium of normal blood vessels was confirmed but the presence of fibrinogen and fragment D at this site was variable and these latter antigens were also demonstrated in the sub-intima and media. There was no evidence for the presence of prothrombin and factor X in normal blood vessels. Platelets, separated by albumingradient centrifugation were washed up to 12 times in buffer with and without Ca++. Factor VIII (RP) and factor V were present in platelets and resisted removal by repeated washings. Initial studies indicated that factor XI is not present in platelets or is easily removed. Weakly positive reactions were obtained for prothrombin with four-times washed platelets but the reaction was enhanced by repeated washings. Factor X (or Xa) was removed from platelets by Ca-free buffer but not by Ca - containing buffer. The results indicate the selective presence of coagulation factors in vascular endothelial cells and platelets and are consistent with the finding of a Ca-dependent link between phospholipid and factor Xa which was also demonstrated in conventional chromatographic studies.


Sign in / Sign up

Export Citation Format

Share Document