Cohort Analysis of the Association of Delirium Severity with Cerebrospinal Fluid Amyloid-Tau-Neurodegeneration Pathologies

Author(s):  
Margaret Parker ◽  
Marissa White ◽  
Cameron Casey ◽  
David Kunkel ◽  
Amber Bo ◽  
...  

Abstract Delirium is associated with cognitive decline and subsequent dementia, and rises in plasma total Tau (tTau) and neurofilament light (NfL), providing links to Amyloid-Tau-Neurodegeneration (ATN) pathophysiology. We investigated whether changes in delirium severity after surgery correlated with changes in cerebrospinal fluid (CSF) ATN biomarkers. Thirty-two thoracic vascular surgical patients were recruited into a prospective biomarker cohort study with assessment of delirium severity and incidence (NCT02926417). CSF (n = 54) and plasma (n = 118) samples were sent for biomarker analysis for tTau, phosphorylated tau-181 (pTau) (plasma n = 53), NfL, and amyloid-β 42/40 ratio (Ab42/40-ratio). The primary outcome was the correlation of preoperative to postoperative change in ATN biomarkers with the highest postoperative Delirium Rating Scale-98 score. CSF and plasma biomarkers all increased postoperatively (all P < .05, n = 13 paired preoperative-postoperative samples). Delirium severity was associated with peak changes in CSF tTau (P = .007, r = 0.710) and pTau (P = .01, r = 0.667) but not NfL (P = .09, rho = 0.491) or Ab42/40-ratio (P = 0.18, rho = 0.394). Sensitivity analysis with exclusion of subjects with putative spinal cord ischaemia shifted the NfL result to significance (P < .001, rho = .847). Our data show that changes in tau and biomarkers of neurodegeneration in the CSF are associated with delirium severity. These data should be considered hypothesis generating and future studies should identify if these changes are robust to confounding.

2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


Author(s):  
Sean Tanabe ◽  
Maggie Parker ◽  
Richard Lennertz ◽  
Robert A Pearce ◽  
Matthew I Banks ◽  
...  

Abstract Delirium is associated with electroencephalogram (EEG) slowing and impairments in connectivity. We hypothesized that delirium would be accompanied by a reduction in the available cortical information (i.e. there is less information processing occurring), as measured by a surrogate, Lempil-Ziv Complexity (LZC), a measure of time-domain complexity. Two ongoing perioperative cohort studies (NCT03124303, NCT02926417) contributed EEG data from 91 patients before and after surgery; 89 participants were used in the analyses. After cleaning and filtering (0.1-50Hz), the perioperative change in LZC and LZC normalized (LZCn) to a phase-shuffled distribution were calculated. The primary outcome was the correlation of within-patient paired changes in delirium severity (Delirium Rating Scale-98 [DRS]) and LZC. Scalp-wide threshold free cluster enhancement was employed for multiple comparison correction. LZC negatively correlated with DRS in a scalp-wide manner (peak channel r 2=0.199, p<0.001). This whole brain effect remained for LZCn, though the correlations were weaker (peak channel r 2=0.076, p=0.010). Delirium diagnosis was similarly associated with decreases in LZC (peak channel p<0.001). For LZCn, the topological significance was constrained to the midline posterior regions (peak channel p=0.006). We found a negative correlation of LZC in the posterior and temporal regions with monocyte chemoattractant protein-1 (peak channel r 2=0.264, p<0.001, n=47) but not for LZCn. Complexity of the EEG signal fades proportionately to delirium severity implying reduced cortical information. Peripheral inflammation, as assessed by monocyte chemoattractant protein-1, does not entirely account for this effect, suggesting that additional pathogenic mechanisms are involved.


Neurology ◽  
2017 ◽  
Vol 90 (4) ◽  
pp. e273-e281 ◽  
Author(s):  
Julio C. Rojas ◽  
Jee Bang ◽  
Iryna V. Lobach ◽  
Richard M. Tsai ◽  
Gil D. Rabinovici ◽  
...  

ObjectiveTo determine the ability of CSF biomarkers to predict disease progression in progressive supranuclear palsy (PSP).MethodsWe compared the ability of baseline CSF β-amyloid1–42, tau, phosphorylated tau 181 (p-tau), and neurofilament light chain (NfL) concentrations, measured by INNO-BIA AlzBio3 or ELISA, to predict 52-week changes in clinical (PSP Rating Scale [PSPRS] and Schwab and England Activities of Daily Living [SEADL]), neuropsychological, and regional brain volumes on MRI using linear mixed effects models controlled for age, sex, and baseline disease severity, and Fisher F density curves to compare effect sizes in 50 patients with PSP. Similar analyses were done using plasma NfL measured by single molecule arrays in 141 patients.ResultsHigher CSF NfL concentration predicted more rapid decline (biomarker × time interaction) over 52 weeks in PSPRS (p = 0.004, false discovery rate–corrected) and SEADL (p = 0.008), whereas lower baseline CSF p-tau predicted faster decline on PSPRS (p = 0.004). Higher CSF tau concentrations predicted faster decline by SEADL (p = 0.004). The CSF NfL/p-tau ratio was superior for predicting change in PSPRS, compared to p-tau (p = 0.003) or NfL (p = 0.001) alone. Higher NfL concentrations in CSF or blood were associated with greater superior cerebellar peduncle atrophy (fixed effect, p ≤ 0.029 and 0.008, respectively).ConclusionsBoth CSF p-tau and NfL correlate with disease severity and rate of disease progression in PSP. The inverse correlation of p-tau with disease severity suggests a potentially different mechanism of tau pathology in PSP as compared to Alzheimer disease.


2020 ◽  
Vol 49 (6) ◽  
pp. 604-610
Author(s):  
Joost Witlox ◽  
Dimitrios Adamis ◽  
Leo Koenderman ◽  
Kees Kalisvaart ◽  
Jos F.M. de Jonghe ◽  
...  

<b><i>Background:</i></b> Ageing, depression, and neurodegenerative disease are common risk factors for delirium in the elderly. These risk factors are associated with dysregulation of the hypothalamic-pituitary-adrenal axis, resulting in higher levels of cortisol under normal and stressed conditions and a slower return to baseline. <b><i>Objectives:</i></b> We investigated whether elevated preoperative cerebrospinal fluid (CSF) cortisol levels are associated with the onset of postoperative delirium. <b><i>Methods:</i></b> In a prospective cohort study CSF samples were collected after cannulation for the introduction of spinal anesthesia of 75 patients aged 75 years and older admitted for surgical repair of acute hip fracture. Delirium was assessed with the confusion assessment method (CAM) and the Delirium Rating Scale-Revised-98 (DRS-R98). Because the CAM and DRS-R98 were available for time of admission and 5 postoperative days, we used generalized estimating equations and linear mixed modeling to examine the association between preoperative CSF cortisol levels and the onset of postoperative delirium. <b><i>Results:</i></b> Mean age was 83.5 (SD 5.06) years, and prefracture cognitive decline was present in one-third of the patients (24 [33%]). Postoperative delirium developed in 27 (36%) patients. We found no association between preoperative CSF cortisol levels and onset or severity of postoperative delirium. <b><i>Conclusions:</i></b> These findings do not support the hypothesis that higher preoperative CSF cortisol levels are associated with the onset of postoperative delirium in elderly hip fracture patients.


Author(s):  
Ingmar Skoog ◽  
Silke Kern ◽  
Jenna Najar ◽  
Rita Guerreiro ◽  
Jose Bras ◽  
...  

Abstract The effect of Alzheimer’s disease (AD) polygenic risk scores (PRS) on amyloid and tau pathophysiology and neurodegeneration in cognitively unimpaired older adults is not known in detail. This study aims to investigate non-APOE AD-PRS and APOE ε4 in relation to AD pathophysiology evaluated by cerebrospinal fluid (CSF) biomarkers in a population-based sample of 70-year olds. A total of 303 dementia-free individuals from the Gothenburg H70 Birth Cohort Studies were included. Genotyping was performed using the NeuroChip, and AD-PRS were calculated. CSF levels of amyloid-β (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), neurogranin (Ng), and neurofilament light (NfL) were measured with enzyme-linked immunosorbent assay. Associations were found between non-APOE PRS and both NfL (p = .001) and Aβ42 (p = .02), and between APOE ε4 and Aβ42 (p = 1e−10), t-tau (p = 5e−4), and p-tau (p = .002). Similar results were observed when only including individuals with CDR = 0, except for no evidence of an association between non-APOE PRS and Aβ42. There was an interaction between non-APOE PRS and Aβ42 pathology status in relation to NfL (p = .005); association was only present in individuals without Aβ42 pathology (p = 3e-4). In relation to Aβ42, there was a borderline interaction (p = .06) between non-APOE PRS and APOE ε4; association was present in ε4 carriers only (p = .03). Similar results were observed in individuals with CDR = 0 (n = 246). In conclusion, among cognitively healthy 70-year olds from the general population, genetic risk of AD beyond the APOE locus was associated with NfL in individuals without Aβ42 pathology, and with Aβ42 in APOE ε4 carriers, suggesting these associations are driven by different mechanisms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mai M. Farid ◽  
Ximeng Yang ◽  
Tomoharu Kuboyama ◽  
Chihiro Tohda

Abstract Trigonelline (TGN; 1-methylpyridin-1-ium-3-carboxylate) is a widely distributed alkaloid derived from plants. Since we previously found a neurite outgrowth effect of TGN, we hypothesised that TGN might help to improve memory deficits. Here, the efficacy of TGN in restoring amyloid β (Aβ)-induced axonal degeneration and in improving memory function was investigated in Alzheimer’s disease 5XFAD model mice that overexpress mutated APP and PS1 genes. Exposure of Aβ25-35 for 3 days induced atrophy of axons and dendrites. Post treatment of TGN recovered the lengths of axons and dendrites. Following oral administration of TGN in mice, TGN itself was detected in the plasma and cerebral cortex. Oral administration of TGN to 5XFAD mice for 14 days showed significant improvement in object recognition memory (P < 0.001) and object location memory (P < 0.01). TGN administration also normalised neurofilament light levels in the cerebral cortex (P < 0.05), which is an axonal damage-associated biomarker. Analysis of target proteins of TGN in neurons by a drug affinity responsive target stability (DARTS) method identified that creatine kinase B-type (CKB) is a direct binding protein of TGN. Treatment with a CKB inhibitor cancelled the TGN-induced axonal and dendritic growth. In conclusion, we found for the first time that TGN penetrates the brain and may activate CKB, leading to axonal formation. This study shows the potential of TGN as a new drug candidate, and a new target molecule, CKB, in memory recovery signalling.


2018 ◽  
Vol 83 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Brendan P. Lucey ◽  
Terry J. Hicks ◽  
Jennifer S. McLeland ◽  
Cristina D. Toedebusch ◽  
Jill Boyd ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Scott H. Kollins ◽  
Ann Childress ◽  
Andrew C. Heusser ◽  
Jacqueline Lutz

AbstractSTARS-Adjunct was a multicenter, open-label effectiveness study of AKL-T01, an app and video-game-based treatment for inattention, as an adjunct to pharmacotherapy in 8–14-year-old children with attention-deficit/hyperactivity disorder (ADHD) on stimulant medication (n = 130) or not on any ADHD medication (n = 76). Children used AKL-T01 for 4 weeks, followed by a 4-week pause and another 4-week treatment. The primary outcome was change in ADHD-related impairment (Impairment Rating Scale (IRS)) after 4 weeks. Secondary outcomes included changes in IRS, ADHD Rating Scale (ADHD-RS). and Clinical Global Impressions Scale—Improvement (CGI-I) on days 28, 56, and 84. IRS significantly improved in both cohorts (On Stimulants: −0.7, p < 0.001; No Stimulants: −0.5, p < 0.001) after 4 weeks. IRS, ADHD-RS, and CGI-I remained stable during the pause and improved with a second treatment period. The treatment was well-tolerated with no serious adverse events. STARS-Adjunct extends AKL-T01’s body of evidence to a medication-treated pediatric ADHD population, and suggests additional treatment benefit.


2021 ◽  
pp. 1-11
Author(s):  
Danni Li ◽  
Lin Zhang ◽  
Nathaniel W. Nelson ◽  
Michelle M. Mielke ◽  
Fang Yu

Background: Utilities of blood-based biomarkers in Alzheimer’s disease (AD) clinical trials remain unknown. Objective: To evaluate the ability of plasma neurofilament light chain (NfL) to predict future declines in cognition and activities of daily living (ADL) outcomes in 26 older adults with mild-to-moderate AD dementia from the FIT-AD Trial. Methods: Plasma NfL was measured at baseline and 3 and 6 months. Cognition and ADL were assessed using the AD Assessment Scale-Cognition (ADAS-Cog) and AD Uniform Dataset Instruments and Disability Assessment for Dementia (DAD), respectively, at baseline, 3, 6, 9, and 12 months. Linear mixed effects models were used to examine the associations between baseline or change in plasma NfL and changes in outcomes. Results: Higher baseline plasma NfL was associated with greater rate of decline in ADAS-Cog from baseline to 6 months (standardized estimate of 0.00462, p = 0.02853) and in ADL from baseline to 12 months (standardized estimate of –0.00284, p = 0.03338). Greater increase in plasma NfL in short term from baseline to 3 months was associated with greater rate of decline in memory and ADL from 3 to 6 months (standardized estimate of –0.04638 [0.003], p = 0.01635; standardized estimate of –0.03818, p = 0.0435) and greater rate of decline in ADL from 3 to 12 month (standardized estimate of –0.01492, p = 0.01082). Conclusion: This study demonstrated that plasma NfL might have the potential to predict cognitive and function decline up to 12 months. However, future studies with bigger sample sizes need to confirm the findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Seok Baek ◽  
Myung Jun Lee ◽  
Han-Kyeol Kim ◽  
Chul Hyoung Lyoo

AbstractFull dynamics of biofluid biomarkers have been unknown in patients with Parkinson’s disease (PD). Using data from 396 PD patients and 182 controls in the Parkinson's Progression Markers Initiative (PPMI) database, we estimated long-term temporal trajectories of CSF α-synuclein (α-syn), amyloid-β (Aβ), total tau (t-tau), phosphorylated tau (p-tau) and serum neurofilament light chain (NfL) by integrating function between the baseline levels and annual changes. At baseline, PD patients showed lower CSF α-syn, Aβ, t-tau and p-tau levels than those of the controls. In all PD patients, CSF α-syn and Aβ decreased in a negative exponential pattern before the onset of motor symptoms, whereas CSF t-tau and p-tau, and serum NfL increased. Patients with cognitive impairment exhibited faster decline of Aβ and α-syn and faster rise of t-tau, p-tau and NfL, when compared to those without. Similarly, low Aβ group showed earlier decline of α-syn, faster rise of t-tau, p-tau and NfL, and faster decline of cognitive performances, when compared to high Aβ group. Our results suggest that longitudinal changes in biomarkers can be influenced by cognitive impairment and Aβ burden at baseline. PD patients with Aβ pathology may be associated with early appearance of α-synuclein pathology, rapid progression of axonal degeneration and neurodegeneration, and consequently greater cognitive decline.


Sign in / Sign up

Export Citation Format

Share Document