scholarly journals Brain Atrophy and Trunk Stability During Dual-Task Walking Among Older Adults

2011 ◽  
Vol 67 (7) ◽  
pp. 790-795 ◽  
Author(s):  
T. Doi ◽  
H. Makizako ◽  
H. Shimada ◽  
D. Yoshida ◽  
K. Ito ◽  
...  
2021 ◽  
Author(s):  
Kathleen Hupfeld ◽  
Justin Geraghty ◽  
Heather R McGregor ◽  
Chris J Hass ◽  
Ofer Pasternak ◽  
...  

Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults are more pronounced when performing a simultaneous cognitive task while walking (i.e., dual task walking). Although it is known that aging results in widespread brain atrophy, few studies have integrated across more than one neuroimaging modality to comprehensively examine the structural neural correlates that may underly dual task walking in older age. We collected spatiotemporal gait data during single and dual task walking for 37 young (18-34 years) and 23 older adults (66-86 years). We also collected T1-weighted and diffusion-weighted MRI scans to determine how brain structure differs in older age and relates to dual task walking. We addressed two aims: 1) to characterize age differences in brain structure across a range of metrics including volumetric, surface, and white matter microstructure; and 2) to test for age group differences in the relationship between brain structure and the dual task cost (DTcost) of gait speed and variability. Key findings included widespread brain atrophy for the older adults, with the most pronounced age differences in brain regions related to sensorimotor processing. We also found multiple associations between regional brain atrophy and greater DTcost of gait speed and variability for the older adults. The older adults showed a relationship of both thinner temporal cortex and shallower sulcal depth in the frontal, sensorimotor, and parietal cortices with greater DTcost of gait. Additionally, the older adults showed a relationship of ventricular volume and superior longitudinal fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait. These relationships were not present for the young adults. Stepwise multiple regression found sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal fasciculus, and sex to best predict DTcost of gait speed, and cortical thickness in the superior temporal gyrus to best predict DTcost of gait variability for older adults. These results contribute to scientific understanding of how individual variations in brain structure are associated with mobility function in aging. This has implications for uncovering mechanisms of brain aging and for identifying target regions for mobility interventions for aging populations.


AGE ◽  
2015 ◽  
Vol 37 (6) ◽  
Author(s):  
Takehiko Doi ◽  
Hiroyuki Shimada ◽  
Hyuma Makizako ◽  
Kota Tsutsumimoto ◽  
Ryo Hotta ◽  
...  

GeroPsych ◽  
2016 ◽  
Vol 29 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Véronique Cornu ◽  
Jean-Paul Steinmetz ◽  
Carine Federspiel

Abstract. A growing body of research demonstrates an association between gait disorders, falls, and attentional capacities in older adults. The present work empirically analyzes differences in gait parameters in frail institutionalized older adults as a function of selective attention. Gait analysis under single- and dual-task conditions as well as selective attention measures were collected from a total of 33 nursing-home residents. We found that differences in selective attention performances were related to the investigated gait parameters. Poorer selective attention performances were associated with higher stride-to-stride variabilities and a slowing of gait speed under dual-task conditions. The present findings suggest a contribution of selective attention to a safe gait. Implications for gait rehabilitation programs are discussed.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 287-288
Author(s):  
Jeffrey Hausdorff ◽  
Nofar Schneider ◽  
Marina Brozgol ◽  
Pablo Cornejo Thumm ◽  
Nir Giladi ◽  
...  

Abstract The simultaneous performance of a secondary task while walking (i.e., dual tasking) increases motor-cognitive interference and fall risk in older adults. Combining transcranial direct current stimulation (tDCS) with the concurrent performance of a task that putatively involves the same brain networks targeted by the tDCS may reduce the negative impact of dual-tasking on walking. We examined whether tDCS applied while walking reduces the dual-task costs to gait and whether this combination is better than tDCS alone or walking alone (with sham stimulation). In 25 healthy older adults (aged 75.7±10.5yrs), a double-blind, within-subject, cross-over pilot study evaluated the acute after-effects of 20 minutes of tDCS targeting the primary motor cortex and the dorsal lateral pre frontal cortex during three separate sessions:1) tDCS while walking on a treadmill in a virtual-reality environment (tDCS+walking), 2) tDCS while seated (tDCS+seated), and 3) walking in the virtual-reality environment with sham tDCS (sham+walking). The complex walking condition taxed motor and cognitive abilities. During each session, single- and dual-task walking and cognitive function were assessed before and immediately after stimulation. Compared to pre-tDCS performance, tDCS+walking reduced the dual-task cost to gait speed (p=0.004) and other gait features (e.g., variability p=0.02), and improved (p<0.001) executive function (Stroop interference score). tDCS+seated and sham+walking did not affect the dual-task cost to gait speed (p>0.17). These initial findings demonstrate that tDCS delivered during challenging walking ameliorates dual-task gait and executive function in older adults, suggesting that the concurrent performance of related tasks enhances the efficacy of the neural stimulation and mobility.


Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
He Zhou ◽  
Catherine Park ◽  
Mohammad Shahbazi ◽  
Michele K. York ◽  
Mark E. Kunik ◽  
...  

<b><i>Background:</i></b> Cognitive frailty (CF), defined as the simultaneous presence of cognitive impairment and physical frailty, is a clinical symptom in early-stage dementia with promise in assessing the risk of dementia. The purpose of this study was to use wearables to determine the most sensitive digital gait biomarkers to identify CF. <b><i>Methods:</i></b> Of 121 older adults (age = 78.9 ± 8.2 years, body mass index = 26.6 ± 5.5 kg/m<sup>2</sup>) who were evaluated with a comprehensive neurological exam and the Fried frailty criteria, 41 participants (34%) were identified with CF and 80 participants (66%) were identified without CF. Gait performance of participants was assessed under single task (walking without cognitive distraction) and dual task (walking while counting backward from a random number) using a validated wearable platform. Participants walked at habitual speed over a distance of 10 m. A validated algorithm was used to determine steady-state walking. Gait parameters of interest include steady-state gait speed, stride length, gait cycle time, double support, and gait unsteadiness. In addition, speed and stride length were normalized by height. <b><i>Results:</i></b> Our results suggest that compared to the group without CF, the CF group had deteriorated gait performances in both single-task and dual-task walking (Cohen’s effect size <i>d</i> = 0.42–0.97, <i>p</i> &#x3c; 0.050). The largest effect size was observed in normalized dual-task gait speed (<i>d</i> = 0.97, <i>p</i> &#x3c; 0.001). The use of dual-task gait speed improved the area under the curve (AUC) to distinguish CF cases to 0.76 from 0.73 observed for the single-task gait speed. Adding both single-task and dual-task gait speeds did not noticeably change AUC. However, when additional gait parameters such as gait unsteadiness, stride length, and double support were included in the model, AUC was improved to 0.87. <b><i>Conclusions:</i></b> This study suggests that gait performances measured by wearable sensors are potential digital biomarkers of CF among older adults. Dual-task gait and other detailed gait metrics provide value for identifying CF above gait speed alone. Future studies need to examine the potential benefits of gait performances for early diagnosis of CF and/or tracking its severity over time.


2021 ◽  
pp. 174702182110341
Author(s):  
Maryll Fournet ◽  
Michaela Pernon ◽  
Sabina Catalano Chiuvé ◽  
Ursula Lopez ◽  
Marina Laganaro

There is a general agreement that speaking requires attention at least for conceptual and lexical processes of utterance production. However, conflicting results have been obtained with dual-task paradigms using either repetition tasks or more generally tasks involving limited loading of lexical selection. This study aimed to investigate whether post-lexical processes recruit attentional resources. We used a new dual-task paradigm in a set of experiments where a continuous verbal production task involved either high or low demand on lexical selection processes. Experiment 1 evaluates lexical and post-lexical processes with a semantic verbal fluency task, whereas experiments 2 and 3 focus on post-lexical processes with a non-propositional speech task. In each experiment, two types of non-verbal secondary tasks were used: processing speed (simple manual reaction times) or inhibition (Go/No-go). In Experiment 1, a dual-task cost was observed on the semantic verbal fluency task and each non-verbal task. In Experiment 2, a dual-task cost appeared on the non-verbal tasks but not on the speech task. The same paradigm was used with older adults (Experiment 3), as increased effort in post-lexical processes has been associated with ageing. For older adults, a dual-task cost was also observed on the non-propositional verbal task when speech was produced with the inhibition non-verbal task. The results suggest an attentional cost on post-lexical processes and strategic effects in the resolution of the dual-task.


2021 ◽  
Vol 10 (4) ◽  
pp. 579
Author(s):  
Deborah Talamonti ◽  
Thomas Vincent ◽  
Sarah Fraser ◽  
Anil Nigam ◽  
Frédéric Lesage ◽  
...  

Cardiovascular fitness is linked to better executive functions, preserved gait speed, and efficient cortical activity. Older adults with cardiovascular risk factors (CVRFs) typically show poor cognitive performance, low physical fitness, and altered brain functioning compared with healthy individuals. In the current study, the impact of regular physical activity on cognition, locomotion, and brain functions was explored in a cohort of older adults with low or high CVRFs. Cortical activation of the frontal areas was investigated using functional Near-Infrared Spectroscopy (fNIRS) at baseline, at 6 months and at 12 months. Evoked cortical response and behavioral performance were assessed using the dual-task walking paradigm, consisting of three conditions: single cognitive task (2-back task), single walking task (walking), and dual-task (2-back whilst walking). Results show greater task-related cortical response at baseline in individuals with high CVRFs compared to those with low CVRFs. Moreover, participants with high CVRFs benefitted the most from participating in regular physical activity, as their cortical response decreased at the 12-month follow-up and became comparable to that of participants with low CVRFs. These changes were observed in conjunction with improved cognitive performance and stable gait speed throughout the 12-month period in both groups. Our findings provide evidence that participation in regular physical activity may be especially beneficial in individuals with CVRFs by promoting brain and cognitive health, thus potentially contributing to prevention of cognitive decline. Future research may explore whether such effects are maintained in the long-term in order to design ad-hoc interventions in this specific population.


Author(s):  
Maxime Lussier ◽  
Kathia Saillant ◽  
Tudor Vrinceanu ◽  
Carol Hudon ◽  
Louis Bherer

Abstract Objective The objective of this study is to provide normative data for a tablet-based dual-task assessment in older adults without cognitive deficits. Method In total, 264 participants aged between 60 and 90 years, French and English-speaking, were asked to perform two discrimination tasks, alone and concurrently. The participants had to answer as fast as possible to one or two images appearing in the center of the tablet by pressing to the corresponding buttons. Normative data are provided for reaction time (RT), coefficient of variation, and accuracy. Analyses of variance were performed by trial types (single-pure, single-mixed, dual-mixed), and linear regressions assessed the relationship between performance and sociodemographic characteristics. Results The participants were highly educated and a large proportion of them were women (73.9%). The accuracy on the task was very high across all blocks. RT data revealed both a task-set cost and a dual-task cost between the blocks. Age was associated with slower RT and with higher coefficient of variability. Men were significantly slower on dual-mixed trials, but their coefficient of variability was lower on single-pure trials. Education was not associated with performance. Conclusions This study provides normative data for a tablet-based dual-task assessment in older adults without cognitive impairment, which was lacking. All participants completed the task with good accuracy in less than 15 minutes and thus, the task is transferable to clinical and research settings.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 287-287
Author(s):  
Deepan Guharajan ◽  
Roee Holtzer

Abstract Aging populations are at increased risk to experience mobility disability, which is associated with falls, frailty, and mortality. Previous studies have not examined the concurrent associations of both positive and negative affect with gait velocity. We examined whether individual differences in positive and negative affect predicted dual-task performance decrements in velocity in a dual-task (DT) paradigm in non-demented older adults. We hypothesize that positive affect would be associated with lower DT costs, and negative affect would be associated with higher DT costs. Participants (N = 403; mean age, = 76.22 (6.55); females = 56%) completed the Positive and Negative Affect Schedule (PANAS) and a DT paradigm that involved three task conditions: Single-Task-Walk (STW), Alpha (cognitive interference requiring participants to recite alternate letters of the alphabet), and Dual-Task-Walk (DTW) requiring participant to perform the two single tasks concurrently. Gait velocity was assessed via an instrumented walkway. As expected, results of a linear mixed effects model (LME) showed a significant decline in gait velocity (cm/s) from STW to DTW (estimate = -11.79; 95%CI = -12.82 to -10.77). LME results further revealed that negative affect was associated with greater decline in gait velocity from STW to DTW (ie., worse DT cost) (estimate = -0.38; 95%CI = -0.73 to -0.03). Positive affect did not, however, predict DT costs in gait velocity (estimate = -0.09; 95%CI = -0.23 to 0.05). These findings suggest that increased negative affect interferes with the allocation of attentional resources to competing task demands inherent in the DT paradigm.


2021 ◽  
Author(s):  
Junhong Zhou ◽  
Brad Manor ◽  
Wanting Yu ◽  
On‐Yee Lo ◽  
Natalia Gouskova ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document