scholarly journals Royal Jelly Prevents the Progression of Sarcopenia in Aged Mice In Vivo and In Vitro

2013 ◽  
Vol 68 (12) ◽  
pp. 1482-1492 ◽  
Author(s):  
K. Niu ◽  
H. Guo ◽  
Y. Guo ◽  
S. Ebihara ◽  
M. Asada ◽  
...  
Keyword(s):  
2013 ◽  
Vol 210 (11) ◽  
pp. 2223-2237 ◽  
Author(s):  
Myriam N. Bouchlaka ◽  
Gail D. Sckisel ◽  
Mingyi Chen ◽  
Annie Mirsoian ◽  
Anthony E. Zamora ◽  
...  

Cancer commonly occurs in the elderly and immunotherapy (IT) is being increasingly applied to this population. However, the majority of preclinical mouse tumor models assessing potential efficacy and toxicities of therapeutics use young mice. We assessed the impact of age on responses to systemic immune stimulation. In contrast to young mice, systemic cancer IT regimens or LPS given to aged mice resulted in rapid and lethal toxicities affecting multiple organs correlating with heightened proinflammatory cytokines systemically and within the parenchymal tissues. This inflammatory response and increased morbidity with age was independent of T cells or NK cells. However, prior in vivo depletion of macrophages in aged mice resulted in lesser cytokine levels, increased survival, and decreased liver histopathology. Furthermore, macrophages from aged mice and normal human elderly volunteers displayed heightened TNF and IL-6 production upon in vitro stimulation. Treatment of both TNF knockout mice and in vivo TNF blockade in aged mice resulted in significant increases in survival and lessened pathology. Importantly, TNF blockade in tumor-bearing, aged mice receiving IT displayed significant anti-tumor effects. These data demonstrate the critical role of macrophages in the age-associated hyper-inflammatory cytokine responses to systemic immunostimulation and underscore the importance of performing preclinical assessments in aged mice.


2016 ◽  
Vol 31 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Pirathiv Kugathasan ◽  
Jessica Waller ◽  
Ligia Westrich ◽  
Aicha Abdourahman ◽  
Joseph A Tamm ◽  
...  

Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 95-95
Author(s):  
Corey M Hoffman ◽  
Sarah E Latchney ◽  
Mark LaMere ◽  
Jason R Myers ◽  
John M Ashton ◽  
...  

Abstract While hematopoietic stem cells (HSCs)-intrinsic effects of aging have been explored, less is known about how HSC support is altered by the aged bone marrow microenvironment (BMME). To assess the role of the BMME in HSC aging, we compared the BMME in young (6-12 weeks) and aged (20-24 months) male mice and young (<50 years old; YO) and aged (>50 YO) human volunteers. Aged mice had remodeling of the BMME, with expansion of the marrow cavity and vascular volume compared to young mice. BMME constituents were redistributed within two distinct anatomic regions, namely endosteal bone-associated (BA) and marrow-associated (MA) cells. BA cells in aged mice contained fewer phenotypic mesenchymal/osteoblastic progenitors, with reduction in their ability to constitute colony forming units (CFUs). CFU loss was also observed in aged human volunteers. Aged murine MA had significant expansion of dysfunctional mesenchymal stem cells (MSCs) and activated macrophages (MΦ). Increased MΦ were also detected in aged human marrows. Following this in vivo characterization, we developed an ex vivo co-culture system to determine if aged murine BMME cells could impart aging characteristics to young HSCs. Young murine HSCs co-cultured with aged MA cells acquired phenotypic properties of aged HSCs, including increased CD41+ expression. Single cell RNA sequencing of Long Term-HSCs (LT-HSCs) from young and aged mice also identified upregulation of integrin-β3 (CD61) as a novel marker of aged LT-HSCs. Subsequent flow cytometry analysis confirmed the increase in CD61+ expression in vivo in aged HSCs. Importantly, aged MA - but not BA cells - also increased CD61+ expression in young HSCs ex vivo, highlighting the region-specific remodeling of the BMME that occurs with age. We then used a reductionist approach to identify targetable cellular and molecular regulators of the region-specific BMME-induced HSC aging. CD45+ and Ter119+ depletion in aged MA cells did not induce CD41+ expression in young HSCs, suggesting that a critical BMME component responsible for non-cell-autonomous HSC aging is present within the hematopoietic pool. Since marrow MΦ can regulate HSCs, we co-cultured aged MA MΦ with young MA and found that aged MΦ were sufficient to increase CD41+ expression in young HSCs. The addition of aged MΦ also expanded young MSCs, demonstrating that MΦ orchestrate both BMME remodeling and HSC aging. We next aimed to explore mechanisms by which aged MA MΦ impart aging characteristics to HSCs. Transcriptional analysis of murine MA MΦ demonstrated an increase in inflammatory activation in aged mice compared to young mice. This finding was also present in aged human MΦs. Among the inflammatory signals, interleukin-1β (IL-1β) was identified to be necessary and sufficient to mediate the aging effect of aged MA MΦ on young HSCs. Transcriptional analysis also revealed downregulation of phagocytic programs in aged MA MΦ compared to young MA MΦ. Supporting the transcriptional data, aged MA MΦs cultured in vitro demonstrated impaired ability to engulf senescent neutrophils compared to young MA MΦ. Bone marrow MΦ continuously remove large quantities of senescent neutrophils through phagocytosis, a process also known as efferocytosis. Complementing the in vitro findings, in vivo testing demonstrated that young MA MΦ are primarily responsible for engulfing senescent neutrophils and that aged MA MΦ had reduced engulfment of senescent neutrophils. No phagocytic defect was identified in aged BA MΦ, highlighting the regionalization of MΦ function within the BMME that is differentially impacted with age. Consistent with the systemic impact of the efferocytic defect of aged MA MΦ, aged mice had increased levels of circulating senescent neutrophils and. Moreover, neutrophils from aged mice had increased caspase-1 activity, a signal required for IL-1β activation. Together, these data provide evidence that aging differentially remodels two anatomically distinct BMMEs. Regional specialization of marrow MΦ was differentially impacted by aging and induced aging characteristics in HSCs. We propose that impaired removal of senescent neutrophils by aged MA MΦ increases IL-1β production, leading to local inflammation and disrupted BMME and HSC function in aged mice. Strategies aimed at restoring healthy efferocytic activity as well as diminishing IL-1β production or function could therefore reduce the aging effect on HSCs by rejuvenating the BMME. Disclosures Liesveld: Onconova: Honoraria; Seattle Genetics: Honoraria.


2005 ◽  
Vol 101 (1-3) ◽  
pp. 215-220 ◽  
Author(s):  
Satoshi Mishima ◽  
Kazu-Michi Suzuki ◽  
Yoichiro Isohama ◽  
Naoko Kuratsu ◽  
Yoko Araki ◽  
...  

2014 ◽  
Vol 191 (4S) ◽  
Author(s):  
Hiroki Ito ◽  
Naoki Aizawa ◽  
Rino Sugiyama ◽  
Harumi Hotta ◽  
Yukio Homma ◽  
...  

2014 ◽  
Vol 50 ◽  
pp. 1-8 ◽  
Author(s):  
Yinting Guo ◽  
Kaijun Niu ◽  
Tatsuma Okazaki ◽  
Hongmei Wu ◽  
Takeo Yoshikawa ◽  
...  
Keyword(s):  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yueying Zhou ◽  
Xiaonan Xin ◽  
Lichao Wang ◽  
Binsheng Wang ◽  
Li Chen ◽  
...  

AbstractThe osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) declines dramatically with aging. By using a calvarial defect model, we showed that a senolytic cocktail (dasatinib+quercetin; D + Q) improved osteogenic capacity of aged BMSC both in vitro and in vivo. The study presented a model to assess strategies to improve bone-forming potential on aged BMSCs. D + Q might hold promise for improving BMSC function in aged populations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Juan Gao ◽  
Jun Liang ◽  
Weixiang Dai ◽  
Zhenfei Wang ◽  
...  

Abstract Background Senile osteoporosis can cause bone fragility and increased risk for fractures and has been one of the most prevalent and severe diseases affecting the elderly population worldwidely. The underlying mechanisms are currently intensive areas of investigation. In age-related bone loss, decreased bone formation overweighs increased bone resorption. The molecular mechanisms underlying defective bone formation in age-related bone loss are not completely understood. In particular, the specific role of histone acetylation in age-related bone loss has not been examined thoroughly. Methods We employed 6- and 18-month-old mice to investigate the mechanisms of defective bone formation in age-related bone loss. Bone marrow stromal cells (BMSCs) were induced to undergo in vitro osteogenic differentiation. Chromatin immunoprecipitation (ChIP) was used to investigate the binding of histone deacetylases (HDACs) on Runx2 promoter in BMSCs. Luciferase reporter and transient transfection assay were employed to study Runx2 gene expression modulation by HDAC and androgen receptor (AR). siRNA and HDAC6 inhibitor, Tubastatin A, were used to inhibit HDAC6 in vitro. And systemic administration of Tubastatin A was used to block HDAC6 in vivo. Results Age-related trabecular bone loss was observed in 18-month-old mice compared with 6-month-old mice. In vitro osteogenic differentiation potential of BMSCs from 18-month-old mice was weaker than 6-month-old mice, in which there was Runx2 expression inactivation in BMSCs of 18-month-old mice compared with 6-month-old mice, which was attributable to HDAC6-mediated histone hypoacetylation in Runx2 promoter. There was competitive binding of HDAC6 and AR on Runx2 promoter to modulate Runx2 expression in BMSCs. More importantly, through siRNA- or specific inhibitor-mediated HDAC6 inhibition, we could activate Runx2 expression, rescue in vitro osteogenesis potential of BMSCs, and alleviate in vivo age-related bone loss of mice. Conclusion HDAC6 accumulation and histone hypoacetylation on Runx2 promoter contributed to the attenuation of in vitro osteogenic differentiation potential of BMSCs from aged mice. Through HDAC6 inhibition, we could activate Runx2 expression and osteogenic differentiation potential of BMSCs from aged mice and alleviate the age-related bone loss of aged mice. Our study will benefit not only for understanding the age-related bone loss, but also for finding new therapies to treat senile osteoporosis.


2020 ◽  
Author(s):  
Zheng Li ◽  
Xuenan Liu ◽  
Xuejiao Liu ◽  
Yangge Du ◽  
Yuan Zhu ◽  
...  

Abstract BackgroundMitochondrial phosphoenolpyruvate carboxykinase (PCK2) is a rate-limiting enzyme that plays critical roles in multiple physiological processes. We unveiled the important role of PCK2 on the regulation of osteogenesis by mesenchymal stromal/stem cells (MSCs) in our previous work. Here we further investigated the roles of PCK2 on regulating adipogenesis of MSCs and its therapeutic effect on osteoporosis. MethodsWe investigated PCK2 function in adipogenic differentiation of MSCs in vitro through loss-and-gain-of-function experiments. This was followed by heterotopic adipose formation assay in nude mice. In addition, ovariectomized (OVX) and aged mice were used as osteoporotic models to test the effect of PCK2 on osteoporosis. The bone formation and adipocyte accumulation were assessed by micro-CT and histological analysis. The multipotent capacity of control and osteoporotic BMMSCs were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR) and western blot analysis. ResultsPCK2 expression levels were significantly decreased in BMMSCs from OVX and aged mice. Furthermore, PCK2 could inhibit adipogenesis of BMMSCs and thus resisting lipid droplet formation and attenuating bone loss in osteoporotic mice. Mechanistically, we detected that autophagy level was decreased in BMMSCs of osteoporotic mice, while overexpression of PCK2 in vivo could rescued the autophagy activity. We further indicated that PCK2 could reverse osteopenia phenotype and adipose formation in OVX and aged mice partially via autophagy.ConclusionsCollectively, we suggested that PCK2 could attenuate bone loss and adipocyte accumulation of BMMSCs in osteoporotic mice through autophagy dependent manner. Our study indicated that PCK2 could be a brand and effective therapeutic target for osteoporosis treatment.


Sign in / Sign up

Export Citation Format

Share Document