scholarly journals Inflammaging: Age and Systemic, Cellular, and Nuclear Inflammatory Biology in Older Adults

2019 ◽  
Vol 74 (11) ◽  
pp. 1716-1724 ◽  
Author(s):  
Dominique Piber ◽  
Richard Olmstead ◽  
Joshua Hyong-Jin Cho ◽  
Tuff Witarama ◽  
Christian Perez ◽  
...  

Abstract Systemic inflammation is associated with increasing age. Yet, there are limited data about the association between age and systemic inflammation within older adults, and whether older age is also associated with cellular and nuclear signaling markers of inflammation. In community-dwelling older adults (N = 262, 60–88 years), systemic levels of C-reactive protein, interleukin-6, and soluble tumor necrosis factor receptor II; levels of toll-like receptor-4–stimulated monocytic production of interleukin-6 and tumor necrosis factor α; and resting nuclear levels of activated nuclear factor kappa B and signal transducer and activator of transcription (STAT1, STAT3, STAT5) were evaluated. Adjusting for demographic and clinical factors, multivariate linear regression tested the association between age and each inflammatory marker. Age was positively associated with increased levels of interleukin-6 and soluble tumor necrosis factor receptor II (p’s < .05) and with increases in STAT1, STAT3, and STAT5 activation (p’s < .05). However, no relationship was found between age and C-reactive protein, toll-like receptor-4–stimulated interleukin-6/tumor necrosis factor alpha α production, or nuclear factor kappa B. Within a community-dwelling sample of older adults, older age is associated with increases in STAT activation, along with increases of systemic inflammatory cytokines. In older adults, heterogeneity in age-related increases in inflammatory disease risk may be related to individual variability in inflammation.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2167-2167
Author(s):  
Pradeep K Dagur ◽  
J. Philip McCoy ◽  
J Nichols ◽  
Laurel Mendelsohn ◽  
C Seamon ◽  
...  

Abstract Introduction Inflammation is increased and related to early mortality in patients with sickle cell disease.(1) This inflammation is associated with upregulation of Toll-like receptor 4 and iron regulated genes in human sickle cell peripheral blood mononuclear cells. In sickle cell mice, heme released during intravascular hemolysis augments pro-inflammatory Toll-like receptor 4 signalling and this results in subsequent organ damage and death. In this study we evaluated whether heme in human sickle cell monocytes is associated with increased Toll-like receptor 4 mediated pro-inflammatory cytokine production. Methods Fresh whole blood from patients (n=10) and controls (n=10) was used for a calcein assay to measure intracellular iron or was incubated with combinations of vehicle, a Toll-like receptor 4 ligand (lipopolysaccharide, 100 ng/ml) and/or an iron chelator (0.1 mM deferasirox (Exjade)). After three hours, the percentage of monocytes with detectable levels of intracellular interleukin-6 and tumor necrosis factor-alpha was quantified by flow cytometry. In an additional experiment fresh whole blood of patients (n=8) was incubated with combinations of vehicle, a Toll-like receptor 4 ligand (lipopolysaccharide, 1 ng/ml) and/or 20uM heme. Results Intracellular monocyte iron was correlated (R-spearman and P-value) positively with plasma levels of C-reactive protein in patients and controls (R=0.454, P=0.044), confirming that high intracellular iron in monocytes is associated with a pro-inflammatory state in vivo. Compared to incubation with lipopolysaccharide alone, co-incubation of fresh human sickle cell blood with lipopolysaccharide and heme increased the absolute percentage of monocytes producing interleukin-6 with a median 8.5% (interquartile range -5.6-22.1, p=0.17) and tumor necrosis factor-alpha with 15.2% (2.0-21.2, p=0.025). Incubation of fresh sickle cell monocytes with heme alone did not increase interleukin-6 and tumor necrosis factor-alpha production significantly (respectively 0.1% and 0.0%). Compared to incubation with lipopolysaccharide alone, co-incubation of lipopolysaccharide with the iron chelator deferasirox significantly decreased the absolute percentage of interleukin-6 producing monocytes with 20.4% (15.2-26.3) (P=0.004), further supporting the involvement of intracellular monocyte iron in Toll-like receptor 4 response. Conclusion We show that levels of intracellular monocyte iron correlate to markers of inflammation in human sickle cell patients. In an additional ex vivo experiment we show that the same monocytes have an increased Toll-like receptor 4 mediated inflammatory response when exposed to heme and a decreased inflammatory response when treated with an iron chelator. We suggest that heme bound iron which is released during intravascular hemolysis and scavenged by monocytes, is a cause of monocyte activation and pro-inflammatory state in sickle cell disease, by augmenting Toll-like receptor 4 signaling. Iron chelation might be an interesting therapeutic option to decrease this pro-inflammatory effect of heme. Figure Monocyte Toll-like receptor 4 dependent pro-inflammatory cytokine production is augmented by heme and inhibited by iron chelation. (A) Compared to incubation of fresh human sickle cell blood with the Toll-like receptor 4 ligand lipopolysaccharide alone, co-incubation of lipopolysaccharide together with the iron chelator deferasirox significantly decreased the absolute percentage of interleukin-6 producing monocytes with 20.4% (15.2-26.3) (P=0.004) (B) In contrast, compared to incubation with lipopolysaccharide alone, co-incubation lipopolysaccharide together with heme increased the absolute percentage of monocytes producing interleukin-6 with a median 8.5% (interquartile range -5.6-22.1, p=0.17) and tumor necrosis factor-alpha with 15.2% (2.0-21.2, p=0.025). *** p<0.005 *p<0.05 1. van Beers EJ, Yang Y, Raghavachari N, Tian X, Allen DT, Nichols JS, e.a. Iron, inflammation, and early death in adults with sickle cell disease. Circ Res. 16 januari 2015;116(2):298-306. Figure 1. Figure 1. Disclosures van Beers: Novartis: Research Funding.


2008 ◽  
Vol 87 (6) ◽  
pp. 558-563 ◽  
Author(s):  
P. Palmqvist ◽  
P. Lundberg ◽  
I. Lundgren ◽  
L. Hänström ◽  
U.H. Lerner

Interleukin-6 (IL-6)-type cytokines are pleiotropic molecules capable of stimulating bone resorption and expressed by numerous cell types. In the present study, we tested the hypothesis that gingival fibroblasts may exert local osteotropic effects through production of IL-6 and related cytokines. IL-6-type cytokine expression and regulation by IL-1β and tumor necrosis factor-α (TNF-α) were studied in fibroblasts from the non-inflamed gingiva of healthy individuals. Constitutive mRNA expression of IL-6, IL-11, and leukemia inhibitory factor (LIF), but not of oncostatin M (OSM), was demonstrated, as was concentration-dependent stimulation of IL-6 and LIF mRNA and of protein by IL-1β and TNF-α. IL-11 mRNA and protein were concentration-dependently stimulated by IL-1β. The signaling pathway involved in IL-6 and LIF mRNA stimulation involved MAP kinases, but not NF-κB. The findings support the view that resident cells may influence the pathogenesis of periodontal disease through osteotropic IL-6-type cytokine production mediated by activation of MAP kinases. Abbreviations: IL-1α (interleukin-1α); IL-1β (interleukin-1β); IL-6 (interleukin-6); IL-11 (interleukin-11); LIF (leukemia inhibitory factor); OSM (oncostatin M); α(1)-coll. I (α(1)-collagen I); ALP (alkaline phosphatase); BMP-2 (bone morphogenetic protein-2); OC (osteocalcin); BSP (bone sialoprotein); TNFR I (tumor necrosis factor receptor I); TNFR II (tumor necrosis factor receptor II); IL-1R1 (interleukin-1 receptor 1); GAPDH (glyceraldehyde-3-phosphate dehydrogenase); RPL13A (ribosomal protein L13A); mRNA (messenger ribonucleic acid); cDNA (complementary deoxyribonucleic acid); PCR (polymerase chain-reaction); BCA (bicinchoninic acid); ELISA (enzyme-linked immunosorbent assay); α-MEM (α modification of Minimum Essential Medium); and FCS (fetal calf serum).


Nutrition ◽  
2008 ◽  
Vol 24 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Sally D. Poppitt ◽  
Geraldine F. Keogh ◽  
Fiona E. Lithander ◽  
Yu Wang ◽  
Tom B. Mulvey ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Arzu Ataseven ◽  
Recep Kesli ◽  
Gulcan Saylam Kurtipek ◽  
Perihan Ozturk

Background. Chronic inflammation may play a role in psoriasis pathogenesis. Lipocalin 2, clusterin, soluble tumor necrosis factor receptor-1 (sTNFR-1), interleukin-6, homocysteine, and uric acid are inflammatory and/or biochemical markers. However, both the roles of these markers and the pathogenesis of psoriasis are unknown.Objective. The aim of this study was to investigate serum levels of lipocalin 2, clusterin, sTNFR-1, interleukin-6, homocysteine, and uric acid in patients and controls groups.Methods. Fifty-six patients with psoriasis and 33 healthy controls were included in the study. Serum concentrations of the markers were evaluated by ELISA. The Psoriasis Area and Severity Index (PASI) was evaluated in all psoriasis patients. Body mass index (BMI) was calculated by dividing weight (kg) by height (m) squared.Results. The serum value of lipocalin and sTNFR-1 were significantly higher in psoriasis patients than in controls (resp.,P<0.001,P<0.05). The others showed no significant differences between psoriasis and the control groups (all of themP>0.05). The mean PASI score in the patient group was8.3±6.5.Conclusions. These findings suggest that lipocalin 2 and sTNFR-1 might play a role in the pathogenesis of psoriasis and can be used as markers of the disease.


Sign in / Sign up

Export Citation Format

Share Document