scholarly journals Age-Related Changes in Posture Steadiness in the Companion Dog

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 967-968
Author(s):  
Alejandra Mondino Vero ◽  
Grant Wagner ◽  
Edgar Lobaton ◽  
Katharine Russell ◽  
Natasha Olby

Abstract Aging is associated with changes in the sensory-motor system that could lead to dynamic instability. In fact, postural control deficits have been proposed as an early indicator of frailty. Measurements of the displacement of the center of pressure (COP) using pressure mat data are useful tools to determine postural steadiness. Companion dogs represent a powerful model to study aging in people because they share our environment and experience similar age-related diseases. To date, the effect of aging on postural control in dogs has not yet been evaluated. The aim of this study was to determine the correlation between age and the displacement of the COP in dogs during quiet standing. Due to the diversity of life expectancy in dogs according to their body size, age was normalized as a fraction of the predicted life expectancy. Dogs older than 75% of their life expectancy (n=18) were asked to stand on a pressure mat for 8 seconds per trial during at least five trials. Only the frames where the dogs were standing still and facing forward were analyzed. Age as a fraction of life expectancy was significantly correlated (p<0.05) with the Medio-lateral Range, Root-Mean-Square Distance, 95% Confidence Ellipse, and Total Sway Area of the COP. These results show that, as in humans, aging in dogs is associated with postural control deficits and therefore reinforce the dog as a suitable model for translational studies of aging and postural steadiness.

1999 ◽  
Vol 9 (4) ◽  
pp. 277-286 ◽  
Author(s):  
Mark G. Carpenter ◽  
James S. Frank ◽  
Cathy P. Silcher

One possible factor influencing the control of upright stance is the perceived threat to one's personal safety, i.e. balance confidence. We explored this factor by examining the control of stationary stance when standing on an elevated platform under various conditions of reduced visual and vestibular inputs. Twenty-eight adults (14 male and 14 female, mean age = 23.5 years) participated in the experiment. Postural control was examined by recording the amplitude variability (RMS) and mean power frequency (MPF) of center of pressure excursions (COP) over a 2-minute interval while participants stood in a normal stance on a low (0.19 m) and a high (0.81 m) platform with toes positioned either at or away from the edge of the platform. Vision was manipulated through eyes open and eyes closed trials. Vestibular input was reduced by tilting the head into extension [1]. Anterior-posterior RMS and MPF of COP were significantly influenced by an interaction between surface height and vision. When vision was available, a significant decrease in RMS was observed during quiet standing on a high surface compared to a low surface independent of step restriction. When vision was available MPF increased when subjects were raised from a low to a high surface. The mean position of the COP was significantly influenced by an interaction between height and step restriction. Differences in RMS and MPF responses to height manipulation were observed between genders in eyes closed conditions. Vestibular input influenced postural control at both low and high levels with significant increases in RMS when vestibular input was reduced. The reciprocal changes observed in RMS and MPF suggest modifications to postural control through changes in ankle stiffness. Vision appears to play a role in increasing ankle stiffness when balance confidence is compromised.


2021 ◽  
Vol 77 (1) ◽  
pp. 51-59
Author(s):  
Agnieszka Opala-Berdzik ◽  
Magdalena Głowacka ◽  
Kajetan J. Słomka

Abstract The aim of this study was to determine whether young adolescent female artistic gymnasts demonstrate better functional stability than age- and sex-matched non-athletes. Different characteristics of the gymnasts’ postural control were expected to be observed. Twenty-two 10- to 13-year-old healthy females (ten national-level artistic gymnasts and twelve non-athletes) participated in the study. To assess their forward functional stability, the 30-s limit of stability test was performed on a force plate. The test consisted of three phases: quiet standing, transition to maximal forward leaning, and standing in the maximal forward leaning position. Between-group comparisons of the directional subcomponents of the root mean squares and mean velocities of the center of pressure and rambling-trembling displacements in two phases (quiet standing and standing in maximal leaning) were conducted. Moreover, anterior stability limits were compared. During standing in maximal forward leaning, there were no differences in the center of pressure and rambling measures between gymnasts and non-athletes (p > 0.05). The values of trembling measures in both anterior-posterior and medial-lateral directions were significantly lower in gymnasts (p < 0.05). Both groups presented similar values for anterior stability limits (p > 0.05). The comparisons of rambling components may suggest a similar supraspinal control of standing in the maximal leaning position between gymnasts and healthy non-athletes. However, decreased trembling in gymnasts may indicate reduced noise in their postural control system possibly due to superior control processes at the spinal level. The anterior stability limit was not influenced by gymnastics training in female adolescents.


Author(s):  
Elżbieta Piątek ◽  
Michał Kuczyński ◽  
Bożena Ostrowska

Due to balance deficits that accompany adolescent idiopathic scoliosis (AIS), the potential interaction between activities of daily living and active self-correction movements (ASC) on postural control deserves particular attention. Our purpose was to assess the effects of ASC movements with or without a secondary mental task on postural control in twenty-five girls with AIS. It is a quasi-experimental within-subject design with repeated measures ANOVA. They were measured in four 20-s quiet standing trials on a force plate: no task, ASC, Stroop test, and both. Based on the center-of-pressure (COP) recordings, the COP parameters were computed. The ASC alone had no effect on any of the postural sway measures. Stroop test alone decreased COP speed and increased COP entropy. Performing the ASC movements and Stroop test together increased the COP speed and decreased COP entropy as compared to the baseline data. In conclusion, our results indicate that AIS did not interfere with postural control. The effects of the Stroop test accounted for good capacity of subjects with AIS to take advantage of distracting attentional resources from the posture. However, performing both tasks together exhibited some deficits in postural control, which may suggest the need for therapeutic consultation while engaging in more demanding activities.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5101 ◽  
Author(s):  
Krzysztof Kręcisz ◽  
Michał Kuczyński

To investigate how additional visual feedback (VFB) affects postural stability we compared 20-sec center-of-pressure (COP) recordings in two conditions: without and with the VFB. Seven healthy adult subjects performed 10 trials lasting 20 seconds in each condition. Simultaneously, during all trials the simple auditory reaction time (RT) was measured. Based on the COP data, the following sway parameters were computed: standard deviation (SD), mean speed (MV), sample entropy (SE), and mean power frequency (MPF). The RT was higher in the VFB condition (p < 0.001) indicating that this condition was attention demanding. The VFB resulted in decreased SD and increased SE in both the medial-lateral (ML) and anterior-posterior (AP) planes (p < .001). These results account for the efficacy of the VFB in stabilizing posture and in producing more irregular COP signals which may be interpreted as higher automaticity and/or larger level of noise in postural control. The MPF was higher during VFB in both planes as was the MV in the AP plane only (p < 0.001). The latter data demonstrate higher activity of postural control system that was caused by the availability of the set-point on the screen and the resulting control error which facilitated and sped up postural control.


2020 ◽  
Vol 20 (10) ◽  
pp. 2040036
Author(s):  
SEONHONG HWANG ◽  
JAESUN REE ◽  
JISUN HWANG

This study investigated the quantitative scaling properties of the center of pressure (COP) as well as the spatial-temporal properties of the COP to elucidate the postural control behavior of healthy elderly (HE) adults and adults with Parkinson’s disease (PD) during quiet standing. Eighteen adults with PD and eighteen HE adults participated in this study. The COP movements were recorded while participants stood on either a firm surface or on a foam pad with their eyes either opened or closed. The sway ranges in the anterior–posterior (AP) ([Formula: see text] and medio-lateral (ML) ([Formula: see text] directions, the total length of the trajectory ([Formula: see text], sway area ([Formula: see text], and scaling exponents ([Formula: see text] from detrended fluctuation analysis were computed from the measured COP data. All temporal variables of the COP in all conditions were found to be significantly larger in the PD group than in the HE group. Low scaling exponents obtained for the PD group showed this group possessed diminished postural control ability compared to the HE group. The PD group showed unpredictable open-loop control in both the AP and ML directions. This proprioceptive control became predictable and the time scale relations decreased as the postural challenges increased. The AP and ML closed-loop control of the PD group was more predictable than that of the HE group only when proprioception was distorted using intact visual input, and the visual and proprioceptive inputs were both intact.


Motor Control ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 383-396
Author(s):  
Alberto Pardo-Ibáñez ◽  
Jose L. Bermejo ◽  
Sergio Gandia ◽  
Julien Maitre ◽  
Israel Villarrasa-Sapiña ◽  
...  

A cross-sectional, prospective, between-subjects design was used in this study to establish the differences in sensory reweighting of postural control among different ages during adolescence. A total of 153 adolescents (five age groups; 13–17 years old) performed bipedal standing in three sensory conditions (i.e., with visual restriction, vestibular disturbance, and proprioceptive disturbance). Center of pressure displacement signals were measured in mediolateral and anteroposterior directions to characterize reweighting in the sensory system in static postural control when sensory information is disturbed or restricted during adolescent growth. The results indicate a development of postural control, showing large differences between subjects of 13–14 years old and older adolescents. A critical change was found in sensory reweighting during bipedal stance with disturbance of proprioceptive information at 15 years old. Adolescents of 13–14 years old showed less postural control and performance than older adolescents during the disturbance of proprioceptive information. Moreover, the results demonstrated that the visual system achieves its development around 15–16 years old. In conclusion, this research suggests that a difference of sensory reweighting under this type of sensorial condition and sensory reweight systems would seem to achieve stabilization at the age of 15.


2014 ◽  
Vol 94 (10) ◽  
pp. 1489-1498 ◽  
Author(s):  
Charlotte M. Hunt ◽  
Gail Widener ◽  
Diane D. Allen

Background People with multiple sclerosis (MS) have diminished postural control, and center of pressure (COP) displacement varies more in this population than in healthy controls. Balance-based torso-weighting (BBTW) can improve clinical balance and mobility in people with MS, and exploration using both linear and nonlinear measures of COP may help determine whether BBTW optimizes movement variability. Objective The aim of this study was to investigate the effects of BBTW on people with MS and healthy controls during quiet standing. Design This was a quasi-experimental study comparing COP variability between groups, between eye closure conditions, and between weighting conditions in the anterior-posterior and medial-lateral directions. Methods Twenty participants with MS and 18 healthy controls stood on a forceplate in 4 conditions: eyes open and closed and with and without BBTW. Linear measures of COP displacement included range and root mean square (RMS). Nonlinear measures included approximate entropy (ApEn) and Lyapunov exponent (LyE). Three-way repeated-measures analyses of variance compared measures across groups and conditions. The association between weighting response and baseline nonlinear variables was examined. When significant associations were found, MS subgroups were created and compared. Results The MS and control groups had significantly different range, RMS, and ApEn values. The eyes-open and eyes-closed conditions had significantly different range and RMS values. Change with weighting correlated with LyE (r=−.70) and ApEn (r=−.59). Two MS subgroups, with low and high baseline LyE values, responded to BBTW in opposite directions, with a significant main effect for weighting condition for the LyE variable in the medial-lateral direction. Limitations The small samples and no identification of impairments related to LyE at baseline were limitations of the study. Conclusions The LyE may help differentiate subgroups who respond differently to BBTW. In both subgroups, LyE values moved toward the average of healthy controls, suggesting that BBTW may help optimize movement variability in people with MS.


2016 ◽  
Vol 28 (03) ◽  
pp. 1650020
Author(s):  
Chun-Ju Chang ◽  
Jen-Suh Chern ◽  
Tsui-Fen Yang ◽  
Sai-Wei Yang

The degeneration of sensory and motor systems due to aging could affect the elderly’s posture and increase the risk of falling. The strategies applied to maintain postural stability might be different between ages, especially in the condition requiring both proprioception and vision sensorimotor coupling. This study proposed a novel sensorimotor assessment protocol to evaluate the postural control ability across the aging process, by using the computerized dynamic posturography and the virtual reality (VR) system. Ten young and 20 elderly healthy adults without fall experience were recruited, and were assessed on a continuous-perturbed platform with or without the VR-based visual interference in a random sequence. Measured variables of the center of pressure as well as the weight-bearing ratio were analyzed and compared. Results showed that the postural sway was significantly larger in all subjects under the VR condition, but the young subjects could rapidly adjust the body to regain postural stability in a rhythmic and symmetric manner; whereas, the elderly adults performed less effectively in postural response. We suggested that the application of the multiple sensation disturbances with VR could effectively evaluate the postural control ability among the healthy elderly. The proposed assessing protocol is also recommended for training the sensorimotor integration to improve the dynamic postural control ability.


2006 ◽  
Vol 22 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Jay Hertel ◽  
Lauren C. Olmsted-Kramer ◽  
John H. Challis

A novel approach to quantifying postural stability in single leg stance is assessment of time-to-boundary (TTB) of center of pressure (COP) excursions. TTB measures estimate the time required for the COP to reach the boundary of the base of support if it were to continue on its instantaneous trajectory and velocity, thus quantifying the spatiotemporal characteristics of postural control. Our purposes were to examine: (a) the intrasession reliability of TTB and traditional COP-based measures of postural control, and (b) the correlations between these measures. Twenty-four young women completed three 10-second trials of single-limb quiet standing on each limb. Traditional measures included mean velocity, standard deviation, and range of mediolateral (ML) and anterior-posterior (AP) COP excursions. TTB variables were the absolute minimum, mean of minimum samples, and standard deviation of minimum samples in the ML and AP directions. The intrasession reliability of TTB measures was comparable to traditional COP based measures. Correlations between TTB and traditional COP based measures were weaker than those within each category of measures, indicating that TTB measures capture different aspects of postural control than traditional measures. TTB measures provide a unique method of assessing spatiotemporal characteristics of postural control during single limb stance.


Sign in / Sign up

Export Citation Format

Share Document