scholarly journals Multi-stage malaria parasite recognition by deep learning

GigaScience ◽  
2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Sen Li ◽  
Zeyu Du ◽  
Xiangjie Meng ◽  
Yang Zhang

Abstract Motivation Malaria, a mosquito-borne infectious disease affecting humans and other animals, is widespread in tropical and subtropical regions. Microscopy is the most common method for diagnosing the malaria parasite from stained blood smear samples. However, this technique is time consuming and must be performed by a well-trained professional, yet it remains prone to errors. Distinguishing the multiple growth stages of parasites remains an especially challenging task. Results In this article, we develop a novel deep learning approach for the recognition of malaria parasites of various stages in blood smear images using a deep transfer graph convolutional network (DTGCN). To our knowledge, this is the first application of graph convolutional network (GCN) on multi-stage malaria parasite recognition in such images. The proposed DTGCN model is based on unsupervised learning by transferring knowledge learnt from source images that contain the discriminative morphology characteristics of multi-stage malaria parasites. This transferred information guarantees the effectiveness of the target parasite recognition. This approach first learns the identical representations from the source to establish topological correlations between source class groups and the unlabelled target samples. At this stage, the GCN is implemented to extract graph feature representations for multi-stage malaria parasite recognition. The proposed method showed higher accuracy and effectiveness in publicly available microscopic images of multi-stage malaria parasites compared to a wide range of state-of-the-art approaches. Furthermore, this method is also evaluated on a large-scale dataset of unseen malaria parasites and the Babesia dataset. Availability Code and dataset are available at https://github.com/senli2018/DTGCN_2021 under a MIT license.

2019 ◽  
Vol 9 (19) ◽  
pp. 4050 ◽  
Author(s):  
Yishuang Ning ◽  
Sheng He ◽  
Zhiyong Wu ◽  
Chunxiao Xing ◽  
Liang-Jie Zhang

Speech synthesis, also known as text-to-speech (TTS), has attracted increasingly more attention. Recent advances on speech synthesis are overwhelmingly contributed by deep learning or even end-to-end techniques which have been utilized to enhance a wide range of application scenarios such as intelligent speech interaction, chatbot or conversational artificial intelligence (AI). For speech synthesis, deep learning based techniques can leverage a large scale of <text, speech> pairs to learn effective feature representations to bridge the gap between text and speech, thus better characterizing the properties of events. To better understand the research dynamics in the speech synthesis field, this paper firstly introduces the traditional speech synthesis methods and highlights the importance of the acoustic modeling from the composition of the statistical parametric speech synthesis (SPSS) system. It then gives an overview of the advances on deep learning based speech synthesis, including the end-to-end approaches which have achieved start-of-the-art performance in recent years. Finally, it discusses the problems of the deep learning methods for speech synthesis, and also points out some appealing research directions that can bring the speech synthesis research into a new frontier.


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fetulhak Abdurahman ◽  
Kinde Anlay Fante ◽  
Mohammed Aliy

Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.


2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 1.91% to 6.69%. <div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


2019 ◽  
Vol 11 (9) ◽  
pp. 190 ◽  
Author(s):  
Jamal ◽  
Xianqiao ◽  
Aldabbas

Emotions detection in social media is very effective to measure the mood of people about a specific topic, news, or product. It has a wide range of applications, including identifying psychological conditions such as anxiety or depression in users. However, it is a challenging task to distinguish useful emotions’ features from a large corpus of text because emotions are subjective, with limited fuzzy boundaries that may be expressed in different terminologies and perceptions. To tackle this issue, this paper presents a hybrid approach of deep learning based on TensorFlow with Keras for emotions detection on a large scale of imbalanced tweets’ data. First, preprocessing steps are used to get useful features from raw tweets without noisy data. Second, the entropy weighting method is used to compute the importance of each feature. Third, class balancer is applied to balance each class. Fourth, Principal Component Analysis (PCA) is applied to transform high correlated features into normalized forms. Finally, the TensorFlow based deep learning with Keras algorithm is proposed to predict high-quality features for emotions classification. The proposed methodology is analyzed on a dataset of 1,600,000 tweets collected from the website ‘kaggle’. Comparison is made of the proposed approach with other state of the art techniques on different training ratios. It is proved that the proposed approach outperformed among other techniques.


2020 ◽  
Vol 10 (2) ◽  
pp. 615 ◽  
Author(s):  
Tomas Iesmantas ◽  
Agne Paulauskaite-Taraseviciene ◽  
Kristina Sutiene

(1) Background: The segmentation of cell nuclei is an essential task in a wide range of biomedical studies and clinical practices. The full automation of this process remains a challenge due to intra- and internuclear variations across a wide range of tissue morphologies, differences in staining protocols and imaging procedures. (2) Methods: A deep learning model with metric embeddings such as contrastive loss and triplet loss with semi-hard negative mining is proposed in order to accurately segment cell nuclei in a diverse set of microscopy images. The effectiveness of the proposed model was tested on a large-scale multi-tissue collection of microscopy image sets. (3) Results: The use of deep metric learning increased the overall segmentation prediction by 3.12% in the average value of Dice similarity coefficients as compared to no metric learning. In particular, the largest gain was observed for segmenting cell nuclei in H&E -stained images when deep learning network and triplet loss with semi-hard negative mining were considered for the task. (4) Conclusion: We conclude that deep metric learning gives an additional boost to the overall learning process and consequently improves the segmentation performance. Notably, the improvement ranges approximately between 0.13% and 22.31% for different types of images in the terms of Dice coefficients when compared to no metric deep learning.


Author(s):  
Fang Dong ◽  
Fanzhang Li

Deep learning has achieved lots of successes in many fields, but when trainable sample are extremely limited, deep learning often under or overfitting to few samples. Meta-learning was proposed to solve difficulties in few-shot learning and fast adaptive areas. Meta-learner learns to remember some common knowledge by training on large scale tasks sampled from a certain data distribution to equip generalization when facing unseen new tasks. Due to the limitation of samples, most approaches only use shallow neural network to avoid overfitting and reduce the difficulty of training process, that causes the waste of many extra information when adapting to unseen tasks. Euclidean space-based gradient descent also make meta-learner's update inaccurate. These issues cause many meta-learning model hard to extract feature from samples and update network parameters. In this paper, we propose a novel method by using multi-stage joint training approach to post the bottleneck during adapting process. To accelerate adapt procedure, we also constraint network to Stiefel manifold, thus meta-learner could perform more stable gradient descent in limited steps. Experiment on mini-ImageNet shows that our method reaches better accuracy under 5-way 1-shot and 5-way 5-shot conditions.


Author(s):  
V. V. Kniaz ◽  
L. Grodzitskiy ◽  
V. A. Knyaz

Abstract. Coded targets are physical optical markers that can be easily identified in an image. Their detection is a critical step in the process of camera calibration. A wide range of coded targets was developed to date. The targets differ in their decoding algorithms. The main limitation of the existing methods is low robustness to new backgrounds and illumination conditions. Modern deep learning recognition-based algorithms demonstrate exciting progress in object detection performance in low-light conditions or new environments. This paper is focused on the development of a new deep convolutional network for automatic detection and recognition of the coded targets and sub-pixel estimation of their centers.


2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

<div>Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 2.38% to 5.27%. The code and the pre-trained model will be available at https://github.com/linlei1214/SITS-BERT upon publication.</div><div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


Sign in / Sign up

Export Citation Format

Share Document