Two main rupture stages during the 2018 magnitude 7.5 Sulawesi earthquake
SUMMARY On 28 September 2018, a Mw 7.5 strike-slip earthquake occurred in Sulawesi Island, Indonesia, and it unexpectedly triggered a tsunami. To clearly understand the spatiotemporal evolution process of source rupture, we collected the far-field body wave data and utilized the back-projection method together with finite fault inversion method to investigate the rupture kinematics of this earthquake. Results obtained with the two methods have good consistency and complementarity. We hold that the rupture expanded from the epicentre and propagated bilaterally towards the north and south along the strike direction during the first 24 s, and then to the south. Therefore, the whole rupture process consists of two main stages. For the second stage, the fault segment experienced most of the moment release between 0 and 15 km depth, while the fault plane tended to slip at greater depth (down to 20 km) in the first stage. The total length of the rupture was about 200 km and the seismic moment was ∼2.48 × 1020 Nm, which was equivalent to Mw 7.5. The surface rupture was evident and the maximum slip of 6.24 m was observed in the Palu basin, which was close to Palu city. The rupture was dominated by left-lateral strike-slip with both normal and thrust components as well. The normal slip exhibited in the shallow part of the fault on the north side of Palu bay together with the special geographical location of Palu bay likely favored tsunami genesis.