scholarly journals The mixology of precursory strain partitioning approaching brittle failure in rocks

2020 ◽  
Vol 221 (3) ◽  
pp. 1856-1872 ◽  
Author(s):  
J McBeck ◽  
Y Ben-Zion ◽  
F Renard

SUMMARY We examine the strain accumulation and localization process throughout 12 triaxial compression experiments on six rock types deformed in an X-ray transparent apparatus. In each experiment, we acquire 50–100 tomograms of rock samples at differential stress steps during loading, revealing the evolving 3-D distribution of X-ray absorption contrasts, indicative of density. Using digital volume correlation (DVC) of pairs of tomograms, we build time-series of 3-D incremental strain tensor fields as the rocks are deformed towards failure. The Pearson correlation coefficients between components of the local incremental strain tensor at each stress step indicate that the correlation strength between pairs of local strain components, including dilation, contraction and shear strain, are moderate-strong in 11 of 12 experiments. In addition, changes in the local strain components from one DVC calculation to the next show differences in the correlations between pairs of strain components. In particular, the correlation of the local changes in dilation and shear strain tends to be stronger than the correlation of changes in dilation-contraction and contraction-shear strain. In 11 of 12 experiments, the most volumetrically frequent mode of strain accommodation includes a synchronized increase in multiple strain components. Early in loading, under lower differential stress, the most frequent strain accumulation mode involves the paired increase in dilation and contraction at neighbouring locations. Under higher differential stress, the most frequent mode is the paired increase in dilation and shear strain. This mode is also the first or second most frequent throughout each complete experiment. Tracking the mean values of the strain components in the sample and the volume of rock that each component occupies reveals fundamental differences in the nature of strain accumulation and localization between the volumetric and shear strain modes. As the dilative strain increases in magnitude throughout loading, it tends to occupy larger volumes within the rock sample and thus delocalizes. In contrast, the increasing shear strain components (left- or right-lateral) do not necessarily occupy larger volumes and so involve localization. Consistent with these evolutions, the correlation length of the dilatational strains tends to increase by the largest amounts of the strain components from lower to higher differential stress. In contrast, the correlation length of the shear strains does not consistently increase or decrease with increasing differential stress.

2014 ◽  
Vol 783-786 ◽  
pp. 2016-2021
Author(s):  
Dinh Thanh Khan ◽  
Shotaro Takeuchi ◽  
Yoshiaki Nakamura ◽  
Hideto Miyake ◽  
Kazumasa Hiramatsu ◽  
...  

We investigated local strain distribution in a cross-sectional area throughout the thickness of a thick aluminum nitride (AlN) film epitaxially grown on a trench-patterned AlN/α-Al2O3 template using X-ray microdiffraction measurements for AlN and Bragg reflections. The results show that the presence of voids caused by the trench pattern strongly influences on the distribution of the strain components in the and directions, which are perpendicular to the trench lines. Discrepancy between strain values obtained from the two Bragg reflections was shown to be the result of twisting of the crystal domains about the axis in the thick AlN film.


Author(s):  
Neelima Kandula ◽  
Jessica McBeck ◽  
Benoît Cordonnier ◽  
Jérôme Weiss ◽  
Dag Kristian Dysthe ◽  
...  

AbstractUnderstanding the mechanisms of strain localization leading to brittle failure in reservoir rocks can shed light on geomechanical processes such as porosity and permeability evolution during rock deformation, induced seismicity, fracturing, and subsidence in geological reservoirs. We perform triaxial compression tests on three types of porous reservoir rocks to reveal the local deformation mechanisms that control system-size failure. We deformed cylindrical samples of Adamswiller sandstone (23% porosity), Bentheim sandstone (23% porosity), and Anstrude limestone (20% porosity), using an X-ray transparent triaxial deformation apparatus. This apparatus enables the acquisition of three-dimensional synchrotron X-ray images, under in situ stress conditions. Analysis of the tomograms provide 3D distributions of the microfractures and dilatant pores from which we calculated the evolving macroporosity. Digital volume correlation analysis reveals the dominant strain localization mechanisms by providing the incremental strain components of pairs of tomograms. In the three rock types, damage localized as a single shear band or by the formation of conjugate bands at failure. The porosity evolution closely matches the evolution of the incremental strain components of dilation, contraction, and shear. With increasing confinement, the dominant strain in the sandstones shifts from dilative strain (Bentheim sandstone) to contractive strain (Adamswiller sandstone). Our study also links the formation of compactive shear bands with porosity variations in Anstrude limestone, which is characterized by a complex pore geometry. Scanning electron microscopy images indicate that the microscale mechanisms guiding strain localization are pore collapse and grain crushing in sandstones, and pore collapse, pore-emanated fractures and cataclasis in limestones. Our dynamic X-ray microtomography data brings unique insights on the correlation between the evolutions of rock microstructure, porosity evolution, and macroscopic strain during the approach to brittle failure in reservoir rocks.


Author(s):  
Huan-Jie Zhang ◽  
Feng Yu ◽  
Shu-Xin Li ◽  
En-Guang He

A new perspective of localized shear strain accumulation was proposed to elucidate the formation mechanism of fine granular area (FGA) generated in a high strength steel under very-high-cycle fatigue (VHCF). On the one hand, experiments of VHCF under the negative stress ratio of -1 was carried out, and the microstructure of FGA was found and characterized by using Scanning Electron Microscope, Transmission Electron Microscopy, and Transmission Kikuchi Diffraction. The results show that the FGA consists of high-density dislocations, sub-grains, and fine grains with high angle grain boundaries. On the other hand, the evolution of shear strain and fatigue damage at the vicinity of an inclusion was modelled by using crystal plasticity finite element method at both positive and negative stress ratios. The results show that although the overall strain in VHCF is negligible, significant shear strain is accumulated at the vicinity of the inclusion. Such a large local strain is the driving force for the formation of FGA. The results also suggest that with the accumulation of shear strain and damage, the positive stress ratio is gradually evolved into negative. This may explain why FGA has also been reported at positive stress ratios in some literatures.


2021 ◽  
Vol 11 (6) ◽  
pp. 2673
Author(s):  
Mu-Hang Zhang ◽  
Xiao-Hong Shen ◽  
Lei He ◽  
Ke-Shi Zhang

Considering the relationship between inhomogeneous plastic deformation and fatigue damage, deformation inhomogeneity evolution and fatigue failure of superalloy GH4169 under temperature 500 °C and macro tension compression cyclic loading are studied, by using crystal plasticity calculation associated with polycrystalline representative Voronoi volume element (RVE). Different statistical standard deviation and differential entropy of meso strain are used to measure the inhomogeneity of deformation, and the relationship between the inhomogeneity and strain cycle is explored by cyclic numerical simulation. It is found from the research that the standard deviations of each component of the strain tensor at the cyclic peak increase monotonically with the cyclic loading, and they are similar to each other. The differential entropy of each component of the strain tensor also increases with the number of cycles, and the law is similar. On this basis, the critical values determined by statistical standard deviations of the strain components and the equivalent strain, and that by differential entropy of strain components, are, respectively, used as fatigue criteria, then predict the fatigue–life curves of the material. The predictions are verified with reference to the measured results, and their deviations are proved to be in a reasonable range.


2021 ◽  
pp. 2100201
Author(s):  
Philipp Jordt ◽  
Stjepan B. Hrkac ◽  
Jorit Gröttrup ◽  
Anton Davydok ◽  
Christina Krywka ◽  
...  

2020 ◽  
Vol 1004 ◽  
pp. 393-400
Author(s):  
Tuerxun Ailihumaer ◽  
Hongyu Peng ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
Gilyong Chung ◽  
...  

Synchrotron monochromatic beam X-ray topography (SMBXT) in grazing incidence geometry shows black and white contrast for basal plane dislocations (BPDs) with Burgers vectors of opposite signs as demonstrated using ray tracing simulations. The inhomogeneous distribution of these dislocations is associated with the concave/convex shape of the basal plane. Therefore, the distribution of these two BPD types were examined for several 6-inch diameter 4H-SiC substrates and the net BPD density distribution was used for evaluating the nature and magnitude of basal plane bending in these wafers. Results show different bending behaviors along the two radial directions - [110] and [100] directions, indicating the existence of non-isotropic bending. Linear mapping of the peak shift of the 0008 reflection along the two directions was carried out using HRXRD to correlate with the results from the SMBXT measurements. Basal-plane-tilt angle calculated using the net BPD density derived from SMBXT shows a good correlation with those obtained from HRXRD measurements, which further confirmed that bending in basal plane is caused by the non-uniform distribution of BPDs. Regions of severe bending were found to be associated with both large tilt angles (95% black contrast BPDs to 5% white contrast BPDs) and abrupt changes in a and c lattice parameters i.e. local strain.


1989 ◽  
Vol 151 ◽  
Author(s):  
W. R. Bennett ◽  
R. F. C. Farrow ◽  
S. S. P. Parkin ◽  
E. E. Marinero

ABSTRACTWe report on the new epitaxial system LaF3/Er/Dy/Er/LaF3/GaAs (111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films and multilayers.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Patrick A. Jones ◽  
John S. Wilson

Abstract Aortic displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) was recently developed to assess heterogeneities in aortic wall circumferential strain (CS). However, previous studies neglected potential radial and shear strain (RSS) distributions. Herein, we present an improved aortic DENSE MRI postprocessing method to assess the feasibility of quantifying all components of the two-dimensional (2D) strain tensor. 32 previously acquired 2D DENSE scans from three distinct aortic locations were re-analyzed. Contrasting previous studies, displacements of the inner and outer aortic wall layers were processed separately to preserve RSS. Differences in regional strain between the new and old postprocessing methods were evaluated, along with interobserver, intraobserver, and interscan repeatability for all strain components. The new postprocessing method revealed an overall mean absolute difference in regional CS of 0.01 ± 0.01 compared to the prior method, with minimal impact on CS repeatability. Mean absolute magnitudes of regional RSS increased significantly compared to changes in CS (radial 0.04 ± 0.05, p < 0.001; shear 0.04 ± 0.04, p = 0.02). Most repeatability metrics for RSS were significantly worse than for CS. The unique distributions of RSS for each axial location associated well with local periaortic structures and mean aortic displacement. The new postprocessing method captures heterogeneous distributions of nonzero RSS which may provide new information for improving clinical diagnostics and computational modeling of heterogeneous aortic wall mechanics. However, future studies are required to improve the repeatability of RSS and assess the influence of partial volume effects.


Sign in / Sign up

Export Citation Format

Share Document