scholarly journals Utilizing pre-polarization to enhance SNMR signals—effect of imperfect switch-off

2020 ◽  
Vol 222 (2) ◽  
pp. 815-826 ◽  
Author(s):  
Thomas Hiller ◽  
Raphael Dlugosch ◽  
Mike Müller-Petke

SUMMARY Surface nuclear magnetic resonance (SNMR) is a well-established technique for the hydrogeological characterization of the subsurface up to depths of about 150 m. Recently, SNMR has been adapted to investigate also the shallow unsaturated zone with small surface loop setups. Due to the decreased volume, a pre-polarization (PP) field prior to the classical spin excitation is applied to enhance the measured response signal. Depending on the strength and orientation of the applied PP-field, the enhancement can often reach several orders of magnitude in the vicinity of the PP-loop. The theoretically achievable enhancement depends on the assumption of an adiabatic, that is perfect, switch-off of the corresponding PP-field. To study the effect of imperfect switch-off, we incorporate full spin dynamics simulations into the SNMR forward modelling. The affected subsurface volume strongly depends on the chosen PP switch-off ramp and the geometry of the loop setup. Due to the imperfect switch-off, the resulting SNMR sounding curves can have significantly decreased signal amplitudes. For comparison, the signal amplitudes of either a 1 ms exponential or linear switch-off ramp are reduced by 17 and 65 per cent, respectively. Disregarding this effect would therefore yield an underestimation of the corresponding subsurface water content of similar magnitude.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoto Kamagata ◽  
Rika Chiba ◽  
Ichiro Kawahata ◽  
Nanako Iwaki ◽  
Saori Kanbayashi ◽  
...  

AbstractLiquid droplets of aggregation-prone proteins, which become hydrogels or form amyloid fibrils, are a potential target for drug discovery. In this study, we proposed an experiment-guided protocol for characterizing the design grammar of peptides that can regulate droplet formation and aggregation. The protocol essentially involves investigation of 19 amino acid additives and polymerization of the identified amino acids. As a proof of concept, we applied this protocol to fused in sarcoma (FUS). First, we evaluated 19 amino acid additives for an FUS solution and identified Arg and Tyr as suppressors of droplet formation. Molecular dynamics simulations suggested that the Arg additive interacts with specific residues of FUS, thereby inhibiting the cation–π and electrostatic interactions between the FUS molecules. Second, we observed that Arg polymers promote FUS droplet formation, unlike Arg monomers, by bridging the FUS molecules. Third, we found that the Arg additive suppressed solid aggregate formation of FUS, while Arg polymer enhanced it. Finally, we observed that amyloid-forming peptides induced the conversion of FUS droplets to solid aggregates of FUS. The developed protocol could be used for the primary design of peptides controlling liquid droplets and aggregates of proteins.


Author(s):  
Francisco de Assis Andrade Barbosa ◽  
Gilder Nader ◽  
Ricardo Tokio Higuti ◽  
Cláudio Kitano ◽  
Emílio Carlos Nelli Silva

Laser interferometry is a well-established technique for the characterization of piezoelectric actuators. In this work, by using a low cost Michelson interferometer, the measurement of the calibration factor and the displacement amplification of a novel piezoelectric flextensional actuator (PFA), designed by using the topology optimization method, is performed. A simple method, based on small phase modulation depth when the PFA is driven by a triangular waveform, allows the absolute interferometer calibration. The free-displacement of the PFA for various drive voltages is measured and the displacement amplification is determined. The linearity and frequencyresponse of the PFA are evaluated up to 20 kHz


Author(s):  
Francesca Ferrari ◽  
Maicol Bissaro ◽  
Simone Fabbian ◽  
Jessica de Almeida Roger ◽  
Stefano Mammi ◽  
...  

<p>In this manuscript, for the first time, we presented a fragment library and we validated its performance by comparison with a well-established technique for fragment screening as solution NMR. We were able to screen 400 different fragments producing a total of 1200 independent fragment-protein recognition pathways. As far as we know, this represents the largest screening based on Molecular dynamics ever reported. Our simulations successfully detected the true binders in the library in a prospective study, showing a notable agreement with a state-of-art screening we performed by NMR on the same dataset.</p>


Sign in / Sign up

Export Citation Format

Share Document