Analysis of chromosome behavior in intact mammalian oocytes: monitoring the segregation of a univalent chromosome during female meiosis

1995 ◽  
Vol 4 (11) ◽  
pp. 2007-2012 ◽  
Author(s):  
P. Hunt ◽  
R. LeMaire ◽  
P. Embury ◽  
L. Sheean ◽  
K. Mroz
2016 ◽  
Vol 27 (5) ◽  
pp. 799-811 ◽  
Author(s):  
Rieko Matsuura ◽  
Tomoko Ashikawa ◽  
Yuka Nozaki ◽  
Daiju Kitagawa

During oogenesis, two successive meiotic cell divisions occur without functional centrosomes because of the inactivation and subsequent elimination of maternal centrosomes during the diplotene stage of meiosis I. Despite being a conserved phenomenon in most metazoans, the means by which this centrosome behavior is controlled during female meiosis remain elusive. Here, we conducted a targeted RNAi screening in the Caenorhabditis elegans gonad to identify novel regulators of centrosome behavior during oogenesis. We screened 513 genes known to be essential for embryo production and directly visualized GFP–γ-tubulin to monitor centrosome behavior at all stages of oogenesis. In the screening, we found that RNAi-mediated inactivation of 33 genes delayed the elimination of GFP–γ-tubulin at centrosomes during oogenesis, whereas inactivation of nine genes accelerated the process. Depletion of the TRIM-NHL protein LIN-41 led to a significant delay in centrosome elimination and to the separation and reactivation of centrosomes during oogenesis. Upon LIN-41 depletion, meiotic chromosomes were abnormally condensed and pulled toward one of the two spindle poles around late pachytene even though the spindle microtubules emanated from both centrosomes. Overall, our work provides new insights into the regulation of centrosome behavior to ensure critical meiotic events and the generation of intact oocytes.


2018 ◽  
Author(s):  
Stefanie Redemann ◽  
Ina Lantzsch ◽  
Norbert Lindow ◽  
Steffen Prohaska ◽  
Martin Srayko ◽  
...  

2016 ◽  
Vol 5 (03) ◽  
pp. 4902
Author(s):  
Afrin Nazli ◽  
Kamini Kumar*

Haworthia limifolia is a xerophytic plant belonging to the family Liliaceae and is indigenous to Africa. It is use extensively for its medicinal properties like antibacterial, antifungal properties and used for the treatment of sores, superficial burns, as a blood purifier and to promote pregnancy in women and cattles. In present investigation chromosomal behaviour of H. limifolia in meiosis was studied. In diplotene stage chiasmata was observed showing the possibilities of genetic recombination. Chromosome clumps were observed in diakinesis indicating sticky nature of chromosomes. Meiotic abnormalities like stickiness, precocious movement, formation of bridges and laggards were also reported in both meiosis I and II. A fairly high percentage of pollen sterility that is 73.41% was recorded resulting in failure of fruit formation. This plant could be designated as facultative apomict (Swanson, 1957) as the only means of reproduction found was asexual or vegetative.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 453-470
Author(s):  
Sue Biggins ◽  
Needhi Bhalla ◽  
Amy Chang ◽  
Dana L Smith ◽  
Andrew W Murray

Abstract Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair α-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.


2014 ◽  
Vol 204 (6) ◽  
pp. 891-900 ◽  
Author(s):  
Ibtissem Nabti ◽  
Petros Marangos ◽  
Jenny Bormann ◽  
Nobuaki R. Kudo ◽  
John Carroll

Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.


Genetics ◽  
2017 ◽  
Vol 207 (3) ◽  
pp. 911-922 ◽  
Author(s):  
Elizabeth Vargas ◽  
Karen McNally ◽  
Jacob A. Friedman ◽  
Daniel B. Cortes ◽  
David Y. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document