P–174 Globulin-rich protein supplements improve blastulation efficiency in culture and promote implantation in vitro

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
S Ojosnegros ◽  
A Seriola ◽  
E Aroca ◽  
A Godeau ◽  
D Denkova ◽  
...  

Abstract Study question Can globulin-rich compared to albumin (HSA) supplements improve blastulation and support embryo development towards post implantation? Summary answer Yes, globulin supplements with clinical-grade quality increase blastulation efficiency by 20% (50% in older mothers) and support the transition of embryos towards post-implantation development. What is known already During embryonic development at the morula stage there is a metabolic transition towards glycolysis as demand from outsourced energy increases. Therefore as cleavage proceeds, the demand for nutrients in the embryo increases accordingly. With few exceptions, HSA from human plasma or recombinant origin has been the main an only protein supplement used in almost all IVF-procedures. Globulin rich supplements are available but their use is not widespread and little is known about their efficiency in post-implantation development. Study design, size, duration We have cultured more than 600 mouse embryos in continuous media containing a protein supplement#1 (PS#1), from 1-cell up to blastocyst stage. At blastocyst stage embryos were replaced into fresh media containing protein supplement#2 (PS#2). The embryos were allowed to hatch naturally and then transferred into a proprietary matrix for further development and implantation for an additional 48h. Participants/materials, setting, methods: The blastulation rate, measured for HSA-supplemented embryo cohort was compared with embryos cultured in PS#1. Hatching efficiency was reported for embryos cultured in transfer media including PS#2. Once embedded in the matrix, advanced label-free imaging techniques and custom algorithms to measure matrix implantation strength were used. Key molecular markers (i.e. OCT4, CDX2) for correct post-implantation lineage patterning were documented by conventional 3D confocal immunofluorescence imaging. Main results and the role of chance Embryos supplemented with PS#1 reached blastocyst with overall 21% higher efficiency than embryos supplemented by HSA. When separated by age cohorts, embryos obtained from older females (ex-colony breeders, >14 weeks old) reached blastocyst stage with 55% higher efficiency than the same type of embryos cultured in the presence of HSA. Embryos obtained from females at optimal reproductive age reached blastocyst stage 10% more efficiently under PS#1 supplementation than with HSA. Hatching efficiency was 45% higher for embryos cultured with PS#2 than embryos supplemented with HSA. For every variable tested (e.g.% of arrested or degenerated embryos) or condition implemented (e.g. mouse basal media, human basal media from different brands, etc.) PS#1 and PS#2 outperformed, without exception, the supplementation with HSA. When embedded in the implantation matrix, the embryos cultured with PS#1 (cleavage) and transferred to PS#2 at blastocyst stage showed a remarkable implantation ability as measured by trophoblast outgrowth and matrix deformations. The embryos in PS#2 medium exerted stronger force into the matrix and also survived longer times than the embryos in HSA. PS#2 supported the transition of blastocyst towards post-implantation stages of development showing the correct lineage patterning of embryonic and extraembryonic molecular markers, including Oct4, CDx2, EOMES or GATA4. Limitations, reasons for caution This is a study based on an animal model. These observations need to be confirmed by ongoing experiments with human embryos. Wider implications of the findings: This work constitutes a proof-of-concept for the use of globulin-rich supplements as higher performance substitute of albumin in the culture of IVF embryos, both as (i) a standard protein source for culture media and (ii) as a supplement for transfer media to capacitate the embryo for implantation. Trial registration number Not applicable

2021 ◽  
Author(s):  
P Stamatiadis ◽  
A Boel ◽  
G Cosemans ◽  
M Popovic ◽  
B Bekaert ◽  
...  

Abstract STUDY QUESTION What is the role of POU class 5 homeobox 1 (POU5F1) in human preimplantation development and how does it compare with the mouse model? SUMMARY ANSWER POU5F1 is required for successful development of mouse and human embryos to the blastocyst stage as knockout embryos exhibited a significantly lower blastocyst formation rate, accompanied by lack of inner cell mass (ICM) formation. WHAT IS KNOWN ALREADY Clustered regularly interspaced short palindromic repeats—CRISPR associated genes (CRISPR-Cas9) has previously been used to examine the role of POU5F1 during human preimplantation development. The reported POU5F1-targeted blastocysts always retained POU5F1 expression in at least one cell, because of incomplete CRISPR-Cas9 editing. The question remains of whether the inability to obtain fully edited POU5F1-targeted blastocysts in human results from incomplete editing or the actual inability of these embryos to reach the blastocyst stage. STUDY DESIGN, SIZE, DURATION The efficiency of CRISPR-Cas9 to induce targeted gene mutations was first optimized in the mouse model. Two CRISPR-Cas9 delivery methods were compared in the B6D2F1 strain: S-phase injection (zygote stage) (n = 135) versus metaphase II-phase (M-phase) injection (oocyte stage) (n = 23). Four control groups were included: non-injected media-control zygotes (n = 43)/oocytes (n = 48); sham-injected zygotes (n = 45)/oocytes (n = 47); Cas9-protein injected zygotes (n = 23); and Cas9 protein and scrambled guide RNA (gRNA)-injected zygotes (n = 27). Immunofluorescence analysis was performed in Pou5f1-targeted zygotes (n = 37), media control zygotes (n = 19), and sham-injected zygotes (n = 15). To assess the capacity of Pou5f1-null embryos to develop further in vitro, additional groups of Pou5f1-targeted zygotes (n = 29) and media control zygotes (n = 30) were cultured to postimplantation stages (8.5 dpf). Aiming to identify differences in developmental capacity of Pou5f1-null embryos attributed to strain variation, zygotes from a second mouse strain—B6CBA (n = 52) were targeted. Overall, the optimized methodology was applied in human oocytes following IVM (metaphase II stage) (n = 101). The control group consisted of intracytoplasmically sperm injected (ICSI) IVM oocytes (n = 33). Immunofluorescence analysis was performed in human CRISPR-injected (n = 10) and media control (n = 9) human embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS A gRNA-Cas9 protein mixture targeting exon 2 of Pou5f1/POU5F1 was microinjected in mouse oocytes/zygotes or human IVM oocytes. Reconstructed embryos were cultured for 4 days (mouse) or 6.5 days (human) in sequential culture media. An additional group of mouse-targeted zygotes was cultured to postimplantation stages. Embryonic development was assessed daily, with detailed scoring at late blastocyst stage. Genomic editing was assessed by immunofluorescence analysis and next-generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Genomic analysis in mouse revealed very high editing efficiencies with 95% of the S-Phase and 100% of the M-Phase embryos containing genetic modifications, of which 89.47% in the S-Phase and 84.21% in the M-Phase group were fully edited. The developmental capacity was significantly compromised as only 46.88% embryos in the S-Phase and 19.05% in the M-Phase group reached the blastocyst stage, compared to 86.36% in control M-Phase and 90.24% in control S-Phase groups, respectively. Immunofluorescence analysis confirmed the loss of Pou5f1 expression and downregulation of the primitive marker SRY-Box transcription factor (Sox17). Our experiments confirmed the requirement of Pou5f1 expression for blastocyst development in the second B6CBA strain. Altogether, our data obtained in mouse reveal that Pou5f1 expression is essential for development to the blastocyst stage. M-Phase injection in human IVM oocytes (n = 101) similarly resulted in 88.37% of the POU5F1-targeted embryos being successfully edited. The developmental capacity of generated embryos was compromised from the eight-cell stage onwards. Only 4.55% of the microinjected embryos reached the late blastocyst stage and the embryos exhibited complete absence of ICM and an irregular trophectoderm cell layer. Loss of POU5F1 expression resulted in absence of SOX17 expression, as in mouse. Interestingly, genetic mosaicism was eliminated in a subset of targeted human embryos (9 out of 38), three of which developed into blastocysts. LIMITATIONS, REASONS FOR CAUTION One of the major hurdles of CRISPR-Cas9 germline genome editing is the occurrence of mosaicism, which may complicate phenotypic analysis and interpretation of developmental behavior of the injected embryos. Furthermore, in this study, spare IVM human oocytes were used, which may not recapitulate the developmental behavior of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS Comparison of developmental competency following CRISPR-Cas-mediated gene targeting in mouse and human may be influenced by the selected mouse strain. Gene targeting by CRISPR-Cas9 is subject to variable targeting efficiencies. Therefore, striving to reduce mosaicism can provide novel molecular insights into mouse and human embryogenesis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by the Ghent University Hospital and Ghent University and supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.


2021 ◽  
Vol 36 (5) ◽  
pp. 1186-1190
Author(s):  
Raoul Orvieto ◽  
Adva Aizer ◽  
Norbert Gleicher

Abstract Human embryos utilise an array of processes to eliminate the very high prevalence of aneuploid cells in early embryo stages. Human embryo self-correction was recently demonstrated by their ability to eliminate/expel abnormal blastomeres as cell debris/fragments. A whole genome amplification study has demonstrated that 63.6% of blastocysts expelled cell debris with abnormal chromosomal rearrangements. Moreover, 55.5% of euploid blastocysts expel aneuploid debris, strongly suggesting that the primary source of cell free DNA in culture media is expelled aneuploid blastomeres and/or their fragments. Such a substantial ability to self-correct downstream from the blastocyststage, therefore, renders any chromosomal diagnosis at the blastocyststage potentially useless, and this, unfortunately, also must particularly include non-invasive PGT-A based on cell-free DNA in spent medium. High rates of false-positive diagnoses of human embryos often lead to non-use and/or disposal of embryos with entirely normal pregnancy potential. Before adopting yet another round of unvalidated PGT-A as a routine adjunct to IVF, we here present facts that deserve to be considered.


2007 ◽  
Vol 81 (13) ◽  
pp. 7111-7123 ◽  
Author(s):  
Benjamin J. Chen ◽  
George P. Leser ◽  
Eiji Morita ◽  
Robert A. Lamb

ABSTRACT For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.


2004 ◽  
Vol 16 (2) ◽  
pp. 202 ◽  
Author(s):  
W.F. Swanson ◽  
A.L. Manharth ◽  
J.B. Bond ◽  
H.L. Bateman ◽  
R.L. Krisher ◽  
...  

Domestic cat embryos typically are cultured in media formulated for somatic cells or embryos from rodents or livestock species. Under these conditions, blastocyst development has been inconsistent and delayed relative to embryos grown in vivo, and embryo viability following transfer has been low. Our goal is to systematically define the culture requirements of the feline embryo to improve embryo development and viability. The objective of this study was to determine the ionic (NaCl, KCl, KH2PO4, and CaCl2:MgSO4) preferences of domestic cat IVF embryos. Anestral female cats were injected (i.m.) with 150IU eCG followed 84h later by 100IUhCG. Oocytes were recovered via laparoscopic follicular aspiration approximately 24h post-hCG injection (Day 0). Semen was collected from one of two males by means of an artificial vagina and washed once in HEPES-buffered IVF medium. Mature cumulus-oocyte complexes were co-incubated with 2.5–5×105 motile sperm mL−1 in IVF medium (100mM NaCl, 4.0mM KCl, 1.0mM KH2 PO4, 2.0mM CaCl2, 1.0mM MgSO4-7H2O, 25.0mM NaHCO3, 3.0mM glucose, 0.1mM pyruvate, 6.0mM L-lactate, 1.0mM glutamine, 0.1mM taurine, 1×MEM nonessential amino acids, 50μgmL−1 gentamicin, and 4.0mgmL−1 BSA) for 19 to 22h in 6% CO2 in air (38.7°C). Cumulus cells were removed and embryos cultured (8–11 embryos/50μL drop; 6% CO2, 5% O2, 89% N2, 38.7°C) in media containing 100.0 or 120.0mM NaCl, 4.0 or 8.0mM KCl, 0.25 or 1.0mM KH2PO4, and 1.0mM:2.0mM or 2.0mM:1.0mM CaCl2:MgSO4 (2×2×2×2 factorial design). The remaining components of the culture medium were identical to the IVF medium (but w/o gentamicin). Development to the blastocyst stage by Day 6, metabolism (glycolysis and pyruvate) of each blastocyst, and final cell number (Hoechst 33342 staining) of all embryos were evaluated. Final cell number of cleaved embryos and development to the blastocyst stage were analyzed using analysis of variance in the GLIMMIX macro of SAS. A total of 236 oocytes were inseminated, yielding 128 cleaved embryos (54%), including 6 blastocysts (4.7% of cleaved embryos). Cell number was not (P>0.05) affected by NaCl, KCl, or KH2PO4 concentrations, but tended (P=0.057) to be higher after culture in 2.0mM:1.0mM CaCl2:MgSO4. Treatments did not significantly affect (P>0.05) development to the blastocyst stage, but numerically more blastocysts were produced in 100.0mM NaCl (4/6), 8.0mM KCl (5/6), or 1.0mM KH2PO4 (5/6). Both CaCl2:MgSO4 ratios resulted in 3 blastocysts. Blastocysts contained 61.08±5.1 (mean±SEM, n=6) cells and actively metabolized glucose (glycolysis, 3.7±0.8pmol/embryo/3h or 0.06±0.01pmol/cell/3h) and pyruvate (0.75±0.27pmol/embryo/3h or 0.013±0.005pmol/cell/3h). These results suggest that the ionic composition of culture media influences the in vitro development of cat IVF embryos. (Supported by NIH grant RR15388.)


Author(s):  
Yi Zheng ◽  
Jianping Fu

Abstract Due to the inaccessibility of post-implantation human embryos and the restriction on in-vitro fertilization (IVF) embryos cultured beyond 14 days, the knowledge of early post-implantation human embryogenesis remains extremely limited. Recently, we have developed a microfluidic in-vitro platform, based on human pluripotent stem cells (hPSCs), which is capable of recapitulating several key developmental landmarks of early human post-implantation embryonic development, including lumenogenesis of the epiblast (EPI), amniogenesis, and specification of primordial germ cells (PGCs) and of primitive streak (PS) cells. Given its controllability and reproducibility, the microfluidic platform provides a powerful experimental platform to advance knowledge of human embryology and reproduction. This protocol describes the preparation of the microfluidic device and its implementation for modeling human post-implantation epiblast and amnion development using hPSCs.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Munuer. Puigvert ◽  
V. Montalv Pallès ◽  
J Mass. Hernáez ◽  
A García-Faura ◽  
B Marquè. López-Teijón ◽  
...  

Abstract Study question Have multinucleation and reverse cleavage any effect on embryo development and clinical outcomes on IVF treatments? Summary answer Embryos capable of repairing dysmorphisms and developing up to blastocyst stage keep intact their ability to become healthy babies. What is known already Time-lapse systems allow IVF laboratories to perform in-depth analysis of embryo development using the continuous monitoring tool. Some events that are impossible to detect with conventional morphologic evaluation, such as reverse cleavage or multinucleation, can be detected using time-lapse. Even though the low scientific evidence, the presence of these events is considered a negative factor when the embryo quality assessment is performed. However, it has been described the possibility that embryos have self-repair intrinsic methods. Study design, size, duration Retrospective study including data from 3,577 cycles with 21,274 embryos cultured until blastocyst stage using one-step culture media in time-lapse incubators (Embryoscope, Vitrolife) up to day 5/6 between 2014 and 2019. Participants/materials, setting, methods Three embryo groups were considered: Control group, embryos without multinucleation or reverse cleavage (CG; n = 16,897); Multinucleation group, embryos with at least one blastomere multinucleated on D + 2/3 (MNC; n = 3,879) and Reverse Cleavage group, embryos undergoing complete fusion of two blastomeres on D + 2/3 (RC; n = 498). Single embryo transfer was performed on blastocyst stage. Clinical outcome rates were compared between groups and analyzed by Chi-square test. Main results and the role of chance As published by other groups, the 2.3% of our embryos showed at least one reverse cleavage event and we observed multinucleation in the 18.2% of the embryos. Blastocyst rate of dysmorphism groups was significantly lower (p < 0.05) than Control group (MNC=20.0%; RC = 27.7%; CG = 58.0%). Once transferred, MNC and RC evolutive embryos showed significantly lower pregnancy (MNC=47.9%; RC = 46.8%; CG = 60.8%; p < 0.05) and clinical pregnancy rates (MNC=39.4%; RC = 40.4% CG = 50.6%; p < 0.05) than the Control group (p < 0.05). However, during the post-implantational development the negative effect of dysmorphisms disappears, reaching values of live birth rate comparable to the Control group (MNC=28.3%; RC = 31.9% CG = 33.8%; p = 0.17). These results prove the importance of blastocyst culture and the inherent capability of the embryos to overcome some abnormal dynamics as multinucleation and reverse cleavage. Thus, these embryos showing the poor-prognosis events can be considered for transfer or vitrify. Limitations, reasons for caution There is a wide difference on sample size between groups despite the fact that the statistical analysis considers that into account. There are some ongoing pregnancies in all groups. Wider implications of the findings: When analyzing the development of embryos undergoing reverse cleavage and multinucleation, we hypothesize that these embryos could be showing a self-correction mechanism for some type of error detected. Embryos capable of repairing and developing up to blastocyst stage keep intact their ability to become healthy babies. Trial registration number Not applicable


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 597-604 ◽  
Author(s):  
K. Hardy ◽  
A.H. Handyside ◽  
R.M. Winston

The development of 181 surplus human embryos, including both normally and abnormally fertilized, was observed from day 2 to day 5, 6 or 7 in vitro. 63/149 (42%) normally fertilized embryos reached the blastocyst stage on day 5 or 6. Total, trophectoderm (TE) and inner cell mass (ICM) cell numbers were analyzed by differential labelling of the nuclei with polynucleotide-specific fluorochromes. The TE nuclei were labelled with one fluorochrome during immunosurgical lysis, before fixing the embryo and labelling both sets of nuclei with a second fluorochrome (Handyside and Hunter, 1984, 1986). Newly expanded normally fertilized blastocysts on day 5 had a total of 58.3 +/− 8.1 cells, which increased to 84.4 +/− 5.7 and 125.5 +/− 19 on days 6 and 7, respectively. The numbers of TE cells were similar on days 5 and 6 (37.9 +/− 6.0 and 40.3 +/− 5.0, respectively) and then doubled on day 7 (80.6 +/− 15.2). In contrast, ICM cell numbers doubled between days 5 and 6 (20.4 +/− 4.0 and 41.9 +/− 5.0, respectively) and remained virtually unchanged on day 7 (45.6 +/− 10.2). There was widespread cell death in both the TE and ICM as evidenced by fragmenting nuclei, which increased substantially by day 7. These results are compared with the numbers of cells in morphologically abnormal blastocysts and blastocysts derived from abnormally fertilized embryos. The nuclei of arrested embryos were also examined. The number of TE and ICM cells allocated in normally fertilized blastocysts appears to be similar to the numbers allocated in the mouse. Unlike the mouse, however, the proportion of ICM cells remains higher, despite cell death in both lineages.


2020 ◽  
Author(s):  
Mehdi Hajian ◽  
Farnoosh Jafarpour ◽  
Sayed Morteza Aghamiri ◽  
Shiva Rouhollahi Varnosfaderani ◽  
Mohsen Rahimi ◽  
...  

Abstract Background: The ingredients of embryo culture media developed by different companies are disclosed. Thus, it is impossible to determine which ingredients might be responsible for differences in pre-and post-implantation embryo development. To address this gap, we performed an experiment to compare two embryo culture media, namely, SOF and commercial BO, on pre- and post-implantation development of cloned Sannen goat embryos. Cumulus oocyte complexes derived from slaughterhouse ovaries were used for in vitro embryo production . In vitro development of IVF, parthenogenetic and SCNT embryos were assessed in both BO and SOF media. The expression of 16 genes, including AKT , OCT4 , SOX2 , BMPR1 , FGFR4 , CDC25 , CDX2 , GCN5 , PCAF , FOXD3 , SMAD5 , FZD , LIFR1 , CTNNB , ERK1 , and IFNT , belonging to 7 important pathways, i.e. pluripotency, FGF, TGFβ, cell cycle and proliferation, histone transferase, trophectoderm, and WNT, were examined in the goat SCNT and IVF blastocysts from both BO and SOF media. Results: The blastocyst rate in BO medium was significantly higher than that of the SOF medium in SCNT embryos ( P < 0.05). All of the genes examined showed increased expression levels in SCNT embryos compared to IVF embryos. In the IVF group, OCT4 , BMPR1 , and GCN5 showed significantly higher expression in the SOF medium compared to the BO medium. In this group, AKT , FGFR4 , SOX2 showed significantly lower expression in the SOF medium compared to the BO medium. In the SCNT group, FGFR4 , GCN5 , FZD , CTNNB , BMPR1 , and FGFR4 showed significantly higher expression in SOF medium compared to BO medium. In vivo development did not differ significantly between the two groups. Conclusions: Based on these results, we concluded that the limited information available on the allocations of ICM and TE cells in SCNT embryos and embryo-specific gene expression may be the major drawback IVC medium and an impediment to successful animal cloning.


2003 ◽  
Vol 25 (2) ◽  
pp. 263-267 ◽  
Author(s):  
Silvia Correa Santos ◽  
Carlos Ruggiero ◽  
Cristina Lacerda Soares Petrarolha Silva ◽  
Eliana Gertrudes Macedo Lemos

In experimental areas of the Education and Researches Ilha Solteira and Jaboticabal UNESP/Campus farms were selected and tagged 20 hermaphrodite plants and 20 feminine of cultivar Sunrise Solo, Improved Sunrise Solo cv.72/12 and Baixinho of Santa Amália.The seeds origined of the selected fruits were cropped to be analysed the self-pollination efficiency and frequency of the sex in the progenies. After that, samples of the young leaf of the matrix plants were colected for the extration of the DNA. It was built five library enriched of microsatellite sequencies, using probes (TCA)10, (TC)13, (GATA)4, (CAC)10 e (TGAG)8.It was possible the development of the primers only in the library that has utilized the probe (TCA)10. This probe allowed the design of 32 primer pairs. From these, 31 presented pattern of unique band in agarose Metaphor and in acrilamide. For primer S36 were observed 2 bands, but with no polymorphism to differentiation in the sexual form at papaya tree culture. However, these primers can be tested, in the futures, in the investigation of the others features in segregated populations of this specie and the related species, germoplasm analysis, cultivars identification, parent evolution and molecular markers for the assisted plant breeding programs.


2020 ◽  
Vol 21 (23) ◽  
pp. 8888
Author(s):  
Bárbara Melo-Baez ◽  
Yat S. Wong ◽  
Constanza J. Aguilera ◽  
Joel Cabezas ◽  
Ana C. F. Mançanares ◽  
...  

During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo–maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo–maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5–5). Individual culture media from in vitro–produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8–16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.


Sign in / Sign up

Export Citation Format

Share Document