scholarly journals REGULATION OF HUMAN INTESTINAL ORGANOID REACTIVE OXYGEN SPECIES PRODUCTION AND MITOCHONDRIAL FUNCTION BY DUOX2 GENETIC VARIATION AND MICROBIAL PRODUCTS

2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S31-S31
Author(s):  
Ingrid Jurickova ◽  
Elizabeth Novak ◽  
Elizabeth Angerman ◽  
Erin Bonkowski ◽  
Kevin Mollen ◽  
...  

Abstract Introduction The DUOX2 intestinal epithelial NADPH oxidase is upregulated in Crohn’s Disease (CD), and DUOX2 mutations are associated with increased CD risk. Oxidative stress and loss of mitochondrial function disrupt the intestinal barrier promoting inflammatory responses to commensals. The relative impact of DUOX2 mutations and microbial products in this regard is poorly understood. Hypothesis We hypothesized that DUOX2 genetic variation would be associated with differences in cellular reactive oxygen species (ROS) production and mitochondrial function in a Human Intestinal Organoid (HIO) model system. Methods Induced pluripotent stem cell lines derived from pediatric CD patients with and without combined DUOX2 missense mutations(R701Q, P982A, and H678R) were used to generate wild type (WT) and DUOX2mut HIOs. Reactive oxygen species (ROS) production was measured using the two-color ROS-ID® Total ROS/Superoxide detection kit, and the mitochondrial membrane potential (MMP) was measured using JC1 staining by flow cytometry in HIO EpCAM+ epithelial cells and CD90+ stromal cells. Expression of inflammatory and mitochondrial genes which varied with DUOX2 mutation carriage in CD patent ileal biopsies was measured by RT-PCR. HIO mitochondrial complex I and II activity was measured using an Oroboros respirometer. Results Epithelial ROS production was reduced in DUOX2mut HIO under basal conditions; this difference was not observed following pyocyanin stimulation (Fig. 1A). A profound suppression of epithelial ROS production was observed following butyrate treatment. Butyrate did not alter stromal cell ROS production. Under these conditions, induction of ROS by pyocyanin was abrogated in WT, but not DUOX2mut HIO epithelial cells (Fig. 1B). Butyrate increased expression of core genes regulating the mitochondrial respiratory chain and DNA synthesis (COX5B, NDUFA1, POLG2, SLC25A27) and HIF1A implicated in barrier function, independent of genotype (p<0.05). The epithelial and stromal cell mitochondrial membrane potential (MMP) (Fig. 2A), and HIO mitochondrial complex I activity (Fig. 2B), were reduced in DUOX2mut HIO under basal conditions. This was specific, as mitochondrial complex II activity did not vary with DUOX2 genotype. Conclusions We confirmed epithelial effects of DUOX2 genotype and butyrate exposure on ROS production in the HIO model system. Genotype dependent effects on basal ROS production were largely abrogated by the microbial products pyocyanin and butyrate, although butyrate inhibition of pyocyanin induced ROS production was dependent on intact DUOX2 function. Data suggest a previously unanticipated effect of DUOX2 genetic variation on the epithelial and stromal cell MMP and cellular respiration. This may have implications for mechanisms by which DUOX2 regulates barrier function and inflammatory responses to commensals in CD.

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 285 ◽  
Author(s):  
John O. Onukwufor ◽  
Brandon J. Berry ◽  
Andrew P. Wojtovich

Mitochondrial reactive oxygen species (ROS) can be either detrimental or beneficial depending on the amount, duration, and location of their production. Mitochondrial complex I is a component of the electron transport chain and transfers electrons from NADH to ubiquinone. Complex I is also a source of ROS production. Under certain thermodynamic conditions, electron transfer can reverse direction and reduce oxygen at complex I to generate ROS. Conditions that favor this reverse electron transport (RET) include highly reduced ubiquinone pools, high mitochondrial membrane potential, and accumulated metabolic substrates. Historically, complex I RET was associated with pathological conditions, causing oxidative stress. However, recent evidence suggests that ROS generation by complex I RET contributes to signaling events in cells and organisms. Collectively, these studies demonstrate that the impact of complex I RET, either beneficial or detrimental, can be determined by the timing and quantity of ROS production. In this article we review the role of site-specific ROS production at complex I in the contexts of pathology and physiologic signaling.


Author(s):  
Ahmed Karoui ◽  
Clément Crochemore ◽  
Najah Harouki ◽  
Cécile Corbière ◽  
David Preterre ◽  
...  

Traffic air pollution is a major health problem and is recognized as an important risk factor for cardiovascular (CV) diseases. In a previous experimental study, we showed that diesel exhaust (DE) exposures induced cardiac mitochondrial and CV dysfunctions associated with the gaseous phase. Here, we hypothesized that NO2 exposures to levels close to those found in DE induce a mitochondrial reactive oxygen species (ROS) production, which contribute to an endothelial dysfunction, an early indicator for numerous CV diseases. For this, we studied the effects of NO2 on ROS production and its impacts on the mitochondrial, coronary endothelial and cardiac functions, after acute (one single exposure) and repeated (three h/day, five days/week for three weeks) exposures in Wistar rats. Acute NO2 exposure induced an early but reversible mitochondrial ROS production. This event was isolated since neither mitochondrial function nor endothelial function were impaired, whereas cardiac function assessment showed a reversible left ventricular dysfunction. Conversely, after three weeks of exposure this alteration was accompanied by a cardiac mitochondrial dysfunction highlighted by an alteration of adenosine triphosphate (ATP) synthesis and oxidative phosphorylation and an increase in mitochondrial ROS production. Moreover, repeated NO2 exposures promoted endothelial dysfunction of the coronary arteries, as shown by reduced acetylcholine-induced vasodilatation, which was due, at least partially, to a superoxide-dependent decrease of nitric oxide (NO) bioavailability. This study shows that NO2 exposures impair cardiac mitochondrial function, which, in conjunction with coronary endothelial dysfunction, contributes to cardiac dysfunction. Together, these results clearly identify NO2 as a probable risk factor in ischemic heart diseases.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1586
Author(s):  
Svetlana Veselova ◽  
Tatyana Nuzhnaya ◽  
Guzel Burkhanova ◽  
Sergey Rumyantsev ◽  
Igor Maksimov

Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.


2021 ◽  
Author(s):  
Biz R. Turnell ◽  
Luisa Kumpitsch ◽  
Klaus Reinhardt

AbstractSperm aging is accelerated by the buildup of reactive oxygen species (ROS), which cause oxidative damage to various cellular components. Aging can be slowed by limiting the production of mitochondrial ROS and by increasing the production of antioxidants, both of which can be generated in the sperm cell itself or in the surrounding somatic tissues of the male and female reproductive tracts. However, few studies have compared the separate contributions of ROS production and ROS scavenging to sperm aging, or to cellular aging in general. We measured reproductive fitness in two lines of Drosophila melanogaster genetically engineered to (1) produce fewer ROS via expression of alternative oxidase (AOX), an alternative respiratory pathway; or (2) scavenge fewer ROS due to a loss-of-function mutation in the antioxidant gene dj-1β. Wild-type females mated to AOX males had increased fecundity and longer fertility durations, consistent with slower aging in AOX sperm. Contrary to expectations, fitness was not reduced in wild-type females mated to dj-1β males. Fecundity and fertility duration were increased in AOX and decreased in dj-1β females, indicating that female ROS levels may affect aging rates in stored sperm and/or eggs. Finally, we found evidence that accelerated aging in dj-1β sperm may have selected for more frequent mating. Our results help to clarify the relative roles of ROS production and ROS scavenging in the male and female reproductive systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. Jaenen ◽  
S. Fraguas ◽  
K. Bijnens ◽  
M. Heleven ◽  
T. Artois ◽  
...  

AbstractDespite extensive research on molecular pathways controlling the process of regeneration in model organisms, little is known about the actual initiation signals necessary to induce regeneration. Recently, the activation of ERK signaling has been shown to be required to initiate regeneration in planarians. However, how ERK signaling is activated remains unknown. Reactive Oxygen Species (ROS) are well-known early signals necessary for regeneration in several models, including planarians. Still, the probable interplay between ROS and MAPK/ERK has not yet been described. Here, by interfering with major mediators (ROS, EGFR and MAPK/ERK), we were able to identify wound-induced ROS, and specifically H2O2, as upstream cues in the activation of regeneration. Our data demonstrate new relationships between regeneration-related ROS production and MAPK/ERK activation at the earliest regeneration stages, as well as the involvement of the EGFR-signaling pathway. Our results suggest that (1) ROS and/or H2O2 have the potential to rescue regeneration after MEK-inhibition, either by H2O2-treatment or light therapy, (2) ROS and/or H2O2 are required for the activation of MAPK/ERK signaling pathway, (3) the EGFR pathway can mediate ROS production and the activation of MAPK/ERK during planarian regeneration.


Sign in / Sign up

Export Citation Format

Share Document