scholarly journals Thermal conductivity estimation of nanofluids with TiO2 nanoparticles by employing artificial neural networks

Author(s):  
Ali Komeili Birjandi ◽  
Misagh Irandoost Shahrestani ◽  
Akbar Maleki ◽  
Ali Habibi ◽  
Fathollah Pourfayaz

Abstract Applying nanofluids in energy-related technologies and thermal mediums can lead to remarkable enhancement in their efficiency and performance due to their modified thermophysical properties. Among thermophysical properties, thermal conductivity (TC) performs principal role in heat transfer ability of nanofluids. Artificial neural networks (ANNs) have shown promising performance in modeling nanofluids’ TC. In this article, two types of ANNs are used for estimating TC of nanofluids with TiO2 nanoparticles. In this regard, effective factors including particle size, temperature, volume fraction of solid particles and TC of the base fluids are applied at the input of the model. Based on the comparison between the estimated data and the corresponding actual ones, it is concluded that employing multi-layer perceptron (MLP) is superior compared with group method of data handling (GMDH). In the optimal conditions of the networks, the R-squared value of the models based on both MLP and GMDH was 0.999. Moreover, average absolute relative deviations of the mentioned models were around 0.23% and 0.32%, respectively.

Computation ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 18 ◽  
Author(s):  
Mohammad Hossein Ahmadi ◽  
Ali Ghahremannezhad ◽  
Kwok-Wing Chau ◽  
Parinaz Seifaddini ◽  
Mohammad Ramezannezhad ◽  
...  

Thermophysical properties of nanofluids play a key role in their heat transfer capability and can be significantly affected by several factors, such as temperature and concentration of nanoparticles. Developing practical and simple-to-use predictive models to accurately determine these properties can be advantageous when numerous dependent variables are involved in controlling the thermal behavior of nanofluids. Artificial neural networks are reliable approaches which recently have gained increasing prominence and are widely used in different applications for predicting and modeling various systems. In the present study, two novel approaches, Genetic Algorithm-Least Square Support Vector Machine (GA-LSSVM) and Particle Swarm Optimization- artificial neural networks (PSO-ANN), are applied to model the thermal conductivity and dynamic viscosity of Fe2O3/EG-water by considering concentration, temperature, and the mass ratio of EG/water as the input variables. Obtained results from the models indicate that GA-LSSVM approach is more accurate in predicting the thermophysical properties. The maximum relative deviation by applying GA-LSSVM was found to be approximately ±5% for the thermal conductivity and dynamic viscosity of the nanofluid. In addition, it was observed that the mass ratio of EG/water has the most significant impact on these properties.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Aref M. al-Swaidani ◽  
Waed T. Khwies

Numerous volcanic scoria (VS) cones are found in many places worldwide. Many of them have not yet been investigated, although few of which have been used as a supplementary cementitious material (SCM) for a long time. The use of natural pozzolans as cement replacement could be considered as a common practice in the construction industry due to the related economic, ecologic, and performance benefits. In the current paper, the effect of VS on the properties of concrete was investigated. Twenty-one concrete mixes with three w/b ratios (0.5, 0.6, and 0.7) and seven replacement levels of VS (0%, 10%, 15%, 20%, 25%, 30%, and 35%) were produced. The investigated concrete properties were the compressive strength, the water permeability, and the concrete porosity. Artificial neural networks (ANNs) were used for prediction of the investigated properties. Feed-forward backpropagation neural networks have been used. The ANN models have been established by incorporation of the laboratory experimental data and by properly choosing the network architecture and training processes. This study shows that the use of ANN models provided a more accurate tool to capture the effects of five parameters (cement content, volcanic scoria content, water content, superplasticizer content, and curing time) on the investigated properties. This prediction makes it possible to design VS-based concretes for a desired strength, water impermeability, and porosity at any given age and replacement level. Some correlations between the investigated properties were derived from the analysed data. Furthermore, the sensitivity analysis showed that all studied parameters have a strong effect on the investigated properties. The modification of the microstructure of VS-based cement paste has been observed, as well.


Author(s):  
Yevgeniy Bodyanskiy ◽  
Olena Vynokurova ◽  
Oleksii Tyshchenko

This work is devoted to synthesis of adaptive hybrid systems based on the Computational Intelligence (CI) methods (especially artificial neural networks (ANNs)) and the Group Method of Data Handling (GMDH) ideas to get new qualitative results in Data Mining, Intelligent Control and other scientific areas. The GMDH-artificial neural networks (GMDH-ANNs) are currently well-known. Their nodes are two-input N-Adalines. On the other hand, these ANNs can require a considerable number of hidden layers for a necessary approximation quality. Introduced Q-neurons can provide a higher quality using the quadratic approximation. Their main advantage is a high learning rate. Universal approximating properties of the GMDH-ANNs can be achieved with the help of compartmental R-neurons representing a two-input RBFN with the grid partitioning of the input variables' space. An adjustment procedure of synaptic weights as well as both centers and receptive fields is provided. At the same time, Epanechnikov kernels (their derivatives are linear to adjusted parameters) can be used instead of conventional Gauss functions in order to increase a learning process rate. More complex tasks deal with stochastic time series processing. This kind of tasks can be solved with the help of the introduced adaptive W-neurons (wavelets). Learning algorithms are characterized by both tracking and smoothing properties based on the quadratic learning criterion. Robust algorithms which eliminate an influence of abnormal outliers on the learning process are introduced too. Theoretical results are illustrated by multiple experiments that confirm the proposed approach's effectiveness.


Author(s):  
Behzad Vaferi

Nanofluids have recently been considered as one of the most popular working fluid in heat transfer and fluid mechanics. Accurate estimation of thermophysical properties of nanofluids is required for the investigation of their heat transfer performance. Thermal conductivity coefficient, convective heat transfer coefficient, and viscosity are some the most important thermophysical properties that directly influence on the application of nanofluids. The aim of the present chapter is to develop and validate artificial neural networks (ANNs) to estimate these thermophysical properties with acceptable accuracy. Some simple and easy measurable parameters including type of nanoparticle and base fluid, temperature and pressure, size and concentration of nanoparticles, etc. are used as independent variables of the ANN approaches. The predictive performance of the developed ANN approaches is validated with both experimental data and available empirical correlations. Various statistical indices including mean square errors (MSE), root mean square errors (RMSE), average absolute relative deviation percent (AARD%), and regression coefficient (R2) are used for numerical evaluation of accuracy of the developed ANN models. Results confirm that the developed ANN models can be regarded as a practical tool for studying the behavior of those industrial applications, which have nanofluids as operating fluid.


Author(s):  
Sara Moridpour ◽  
Ehsan Mazloumi ◽  
Reyhaneh Hesami

The increase in number of passengers and tramcars will wear down existing rail structures faster. This is forcing the rail infrastructure asset owners to incorporate asset management strategies to reduce total operating cost of maintenance whilst improving safety and performance. Analysing track geometry defects is critical to plan a proactive maintenance strategy in short and long term. Repairing and maintaining the correctly selected tram tracks can effectively reduce the cost of maintenance operations. The main contribution of this chapter is to explore the factors influencing the degradation of tram tracks (light rail tracks) using existing geometric data, inspection data, load data and repair data. This chapter also presents an Artificial Neural Networks (ANN) model to predict the degradation of tram tracks. Predicting the degradation of tram tracks will assist in understanding the maintenance needs of tram system and reduce the operating costs of the system.


Sign in / Sign up

Export Citation Format

Share Document