scholarly journals The Role of DRD1 and DRD2 Receptors for Response Selection Under Varying Complexity Levels: Implications for Metacontrol Processes

2019 ◽  
Vol 22 (12) ◽  
pp. 747-753 ◽  
Author(s):  
Nicolas Zink ◽  
Wiebke Bensmann ◽  
Larissa Arning ◽  
Lorenza S Colzato ◽  
Ann-Kathrin Stock ◽  
...  

Abstract Background Highly complex tasks generally benefit from increases in cognitive control, which has been linked to dopamine. Yet, the same amount of control may actually be detrimental in tasks with low complexity so that the task-dependent allocation of cognitive control resources (also known as “metacontrol”) is key to expedient and adaptive behavior in various contexts. Methods Given that dopamine D1 and D2 receptors have been suggested to exert opposing effects on cognitive control, we investigated the impact of 2 single nucleotide polymorphisms in the DRD1 (rs4532) and DRD2 (rs6277) genes on metacontrol in 195 healthy young adults. Subjects performed 2 consecutive tasks that differed in their demand for control (starting with the less complex task and then performing a more complex task rule). Results We found carriers of the DRD1 rs4532 G allele to outperform noncarriers in case of high control requirements (i.e., reveal a better response accuracy), but not in case of low control requirements. This was confirmed by Bayesian analyses. No effects of DRD2 rs6277 genotype on either task were evident, again confirmed by Bayesian analyses. Conclusions Our findings suggest that higher DRD1 receptor efficiency improves performance during high, but not low, control requirements, probably by promoting a “D1 state,” which is characterized by highly stable task set representations. The null findings for DRD2 signaling might be explained by the fact that the “D2 state” is thought to enhance flexible switching between task set representations when our task only featured 1 task set at any given time.

2013 ◽  
Vol 221 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Kerstin Jost ◽  
Wouter De Baene ◽  
Iring Koch ◽  
Marcel Brass

The role of cue processing has become a controversial topic in research on cognitive control using task-switching procedures. Some authors suggested a priming account to explain switch costs as a form of encoding benefit when the cue from the previous trial is repeated and hence challenged theories that attribute task-switch costs to task-set (re)configuration. A rich body of empirical evidence has evolved that indeed shows that cue-encoding repetition priming is an important component in task switching. However, these studies also demonstrate that there are usually substantial “true” task-switch costs. Here, we review this behavioral, electrophysiological, and brain imaging evidence. Moreover, we describe alternative approaches to the explicit task-cuing procedure, such as the usage of transition cues or the task-span procedure. In addition, we address issues related to the type of cue, such as cue transparency. We also discuss methodological and theoretical implications and argue that the explicit task-cuing procedure is suitable to address issues of cognitive control and task-set switching.


2021 ◽  
Vol 149 ◽  
Author(s):  
Jing Wang ◽  
Mian Wang ◽  
Zihao Li ◽  
Xinyin Wu ◽  
Xian Zhang ◽  
...  

Abstract The aim of this study was to explore the impact of polymorphism of PD-1 gene and its interaction with tea drinking on susceptibility to tuberculosis (TB). A total of 503 patients with TB and 494 controls were enrolled in this case–control study. Three single-nucleotide polymorphisms of PD-1 (rs7568402, rs2227982 and rs36084323) were genotyped and unconditional logistic regression analysis was used to identify the association between PD-1 polymorphism and TB, while marginal structural linear odds models were used to estimate the interactions. Genotypes GA (OR 1.434), AA (OR 1.891) and GA + AA (OR 1.493) at rs7568402 were more prevalent in the TB patients than in the controls (P < 0.05). The relative excess risk of interaction (RERI) between rs7568402 of PD-1 genes and tea drinking was −0.3856 (95% confidence interval −0.7920 to −0.0209, P < 0.05), which showed a negative interaction. However, the RERIs between tea drinking and both rs2227982 and rs36084323 of PD-1 genes were not statistically significant. Our data demonstrate that rs7568402 of PD-1 genes was associated with susceptibility to TB, and there was a significant negative interaction between rs7568402 and tea drinking. Therefore, preventive measures through promoting the consumption of tea should be emphasised in the high-risk populations.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 477-477
Author(s):  
Leah K Treffer ◽  
Edward S Rice ◽  
Anna M Fuller ◽  
Samuel Cutler ◽  
Jessica L Petersen

Abstract Domestic yak (Bos grunniens) are bovids native to the Asian Qinghai-Tibetan Plateau. Studies of Asian yak have revealed that introgression with domestic cattle has contributed to the evolution of the species. When imported to North America (NA), some hybridization with B. taurus did occur. The objective of this study was to use mitochondrial (mt) DNA sequence data to better understand the mtDNA origin of NA yak and their relationship to Asian yak and related species. The complete mtDNA sequence of 14 individuals (12 NA yak, 1 Tibetan yak, 1 Tibetan B. indicus) was generated and compared with sequences of similar species from GeneBank (B. indicus, B. grunniens (Chinese), B. taurus, B. gaurus, B. primigenius, B. frontalis, Bison bison, and Ovis aries). Individuals were aligned to the B. grunniens reference genome (ARS_UNL_BGru_maternal_1.0), which was also included in the analyses. The mtDNA genes were annotated using the ARS-UCD1.2 cattle sequence as a reference. Ten unique NA yak haplotypes were identified, which a haplotype network separated into two clusters. Variation among the NA haplotypes included 93 nonsynonymous single nucleotide polymorphisms. A maximum likelihood tree including all taxa was made using IQtree after the data were partitioned into twenty-two subgroups using PartitionFinder2. Notably, six NA yak haplotypes formed a clade with B. indicus; the other four haplotypes grouped with B. grunniens and fell as a sister clade to bison, gaur and gayal. These data demonstrate two mitochondrial origins of NA yak with genetic variation in protein coding genes. Although these data suggest yak introgression with B. indicus, it appears to date prior to importation into NA. In addition to contributing to our understanding of the species history, these results suggest the two major mtDNA haplotypes in NA yak may functionally differ. Characterization of the impact of these differences on cellular function is currently underway.


2021 ◽  
Vol 10 (5) ◽  
pp. 1148
Author(s):  
Makedonka Atanasovska Velkovska ◽  
Katja Goričar ◽  
Tanja Blagus ◽  
Vita Dolžan ◽  
Barbara Cvenkel

Oxidative stress and neuroinflammation are involved in the pathogenesis and progression of glaucoma. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in inflammation and oxidative stress genes on the risk of glaucoma, the patients’ clinical characteristics and the glaucoma phenotype. In total, 307 patients with primary open-angle glaucoma or ocular hypertension were enrolled. The control group included 339 healthy Slovenian blood donors. DNA was isolated from peripheral blood. Genotyping was performed for SOD2 rs4880, CAT rs1001179, GPX1 rs1050450, GSTP1 rs1695, GSTM1 gene deletion, GSTT1 gene deletion, IL1B rs1143623, IL1B rs16944, IL6 rs1800795 and TNF rs1800629. We found a nominally significant association of GSTM1 gene deletion with decreased risk of ocular hypertension and a protective role of IL1B rs16944 and IL6 rs1800629 in the risk of glaucoma. The CT and TT genotypes of GPX1 rs1050450 were significantly associated with advanced disease, lower intraocular pressure and a larger vertical cup–disc ratio. In conclusion, genetic variability in IL1B and IL6 may be associated with glaucoma risk, while GPX and TNF may be associated with the glaucoma phenotype. In the future, improved knowledge of these pathways has the potential for new strategies and personalised treatment of glaucoma.


2021 ◽  
Author(s):  
Moritz J. Maier ◽  
David Rosenbaum ◽  
Martin Brüne ◽  
Andreas J. Fallgatter ◽  
Ann‐Christine Ehlis
Keyword(s):  

Author(s):  
Stephen E. Lincoln ◽  
Tina Hambuch ◽  
Justin M. Zook ◽  
Sara L. Bristow ◽  
Kathryn Hatchell ◽  
...  

Abstract Purpose To evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small copy-number variants (CNVs), complex alterations, and variants in low-complexity or segmentally duplicated regions. Methods An interlaboratory pilot study used synthetic specimens to assess detection of challenging variant types by various next-generation sequencing (NGS)–based workflows. One well-performing workflow was further validated and used in clinician-ordered testing of more than 450,000 patients. Results In the interlaboratory study, only 2 of 13 challenging variants were detected by all 10 workflows, and just 3 workflows detected all 13. Limitations were also observed among 11 less-challenging indels. In clinical testing, 21.6% of patients carried one or more pathogenic variants, of which 13.8% (17,561) were classified as technically challenging. These variants were of diverse types, affecting 556 of 1,217 genes across hereditary cancer, cardiovascular, neurological, pediatric, reproductive carrier screening, and other indicated tests. Conclusion The analytic and clinical sensitivity of NGS workflows can vary considerably, particularly for prevalent, technically challenging variants. This can have important implications for the design and validation of tests (by laboratories) and the selection of tests (by clinicians) for a wide range of clinical indications.


2013 ◽  
Vol 120 (1) ◽  
pp. 190-229 ◽  
Author(s):  
Anne G. E. Collins ◽  
Michael J. Frank
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document