scholarly journals Fc receptor-like 4 and 5 define human atypical memory B cells

2020 ◽  
Vol 32 (12) ◽  
pp. 755-770
Author(s):  
Huifang Li ◽  
Jessica Dement-Brown ◽  
Pei-Jyun Liao ◽  
Ilya Mazo ◽  
Frederick Mills ◽  
...  

Abstract Atypical memory B cells accumulate in chronic infections and autoimmune conditions, and commonly express FCRL4 and FCRL5, respective IgA and IgG receptors. We characterized memory cells from tonsils on the basis of both FCRL4 and FCRL5 expression, defining three subsets with distinct surface proteins and gene expression. Atypical FCRL4+FCRL5+ memory cells had the most discrete surface protein expression and were enriched in cell adhesion pathways, consistent with functioning as tissue-resident cells. Atypical FCRL4−FCRL5+ memory cells expressed transcription factors and immunoglobulin genes that suggest poised differentiation into plasma cells. Accordingly, the FCRL4−FCRL5+ memory subset was enriched in pathways responding to endoplasmic reticulum stress and IFN-γ. We reconstructed ongoing B-cell responses as lineage trees, providing crucial in vivo developmental context. Each memory subset typically maintained its lineage, denoting mechanisms enforcing their phenotypes. Classical FCRL4−FCRL5− memory cells were infrequently detected in lineage trees, suggesting the majority were in a quiescent state. FCRL4−FCRL5+ cells were the most represented memory subset in lineage trees, indicating robust participation in ongoing responses. Together, these differences suggest FCRL4 and FCRL5 are unlikely to be passive markers but rather active drivers of human memory B-cell development and function.

2000 ◽  
Vol 191 (7) ◽  
pp. 1149-1166 ◽  
Author(s):  
Louise J. McHeyzer-Williams ◽  
Melinda Cool ◽  
Michael G. McHeyzer-Williams

The mechanisms that regulate B cell memory and the rapid recall response to antigen remain poorly defined. This study focuses on the rapid expression of B cell memory upon antigen recall in vivo, and the replenishment of quiescent B cell memory that follows. Based on expression of CD138 and B220, we reveal a unique and major subtype of antigen-specific memory B cells (B220−CD138−) that are distinct from antibody-secreting B cells (B220+/−CD138+) and B220+CD138− memory B cells. These nonsecreting somatically mutated B220− memory responders rapidly dominate the splenic response and comprise >95% of antigen-specific memory B cells that migrate to the bone marrow. By day 42 after recall, the predominant quiescent memory B cell population in the spleen (75–85%) and the bone marrow (>95%) expresses the B220− phenotype. Upon adoptive transfer, B220− memory B cells proliferate to a lesser degree but produce greater amounts of antibody than their B220+ counterparts. The pattern of cellular differentiation after transfer indicates that B220− memory B cells act as stable self-replenishing intermediates that arise from B220+ memory B cells and produce antibody-secreting cells on rechallenge with antigen. Cell surface phenotype and Ig isotype expression divide the B220− compartment into two main subsets with distinct patterns of integrin and coreceptor expression. Thus, we identify new cellular components of B cell memory and propose a model for long-term protective immunity that is regulated by a complex balance of committed memory B cells with subspecialized immune function.


2015 ◽  
Vol 112 (38) ◽  
pp. E5281-E5289 ◽  
Author(s):  
Bettina Budeus ◽  
Stefanie Schweigle de Reynoso ◽  
Martina Przekopowitz ◽  
Daniel Hoffmann ◽  
Marc Seifert ◽  
...  

Our knowledge about the clonal composition and intraclonal diversity of the human memory B-cell compartment and the relationship between memory B-cell subsets is still limited, although these are central issues for our understanding of adaptive immunity. We performed a deep sequencing analysis of rearranged immunoglobulin (Ig) heavy chain genes from biological replicates, covering more than 100,000 memory B lymphocytes from two healthy adults. We reveal a highly similar B-cell receptor repertoire among the four main human IgM+ and IgG+ memory B-cell subsets. Strikingly, in both donors, 45% of sequences could be assigned to expanded clones, demonstrating that the human memory B-cell compartment is characterized by many, often very large, B-cell clones. Twenty percent of the clones consisted of class switched and IgM+(IgD+) members, a feature that correlated significantly with clone size. Hence, we provide strong evidence that the vast majority of Ig mutated B cells—including IgM+IgD+CD27+ B cells—are post-germinal center (GC) memory B cells. Clone members showed high intraclonal sequence diversity and high intraclonal versatility in Ig class and IgG subclass composition, with particular patterns of memory B-cell clone generation in GC reactions. In conclusion, GC produce amazingly large, complex, and diverse memory B-cell clones, equipping the human immune system with a versatile and highly diverse compartment of IgM+(IgD+) and class-switched memory B cells.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4500-4504 ◽  
Author(s):  
Nadia L. Bernasconi ◽  
Nobuyuki Onai ◽  
Antonio Lanzavecchia

Abstract Toll-like receptors (TLRs) are pattern recognition receptors that trigger innate immunity. In this study we investigated the expression of 10 TLRs in human naive and memory B-cell subsets. We report that in human naive B cells most TLRs are expressed at low to undetectable levels, but the expression of TLR9 and TLR10 is rapidly induced following B-cell-receptor (BCR) triggering. In contrast, memory B cells express several TLRs at constitutively high levels. The differential expression of TLR9 correlates with responsiveness to its agonist, CpG DNA. Thus, human memory B cells proliferate and differentiate to immunoglobulin (Ig)–secreting cells in response to CpG, while naive B do so only if simultaneously triggered through the BCR. The BCR-induced expression of TLRs in human naive B cells prevents polyclonal activation in a primary response, because it restricts stimulation to antigen-specific B cells. In contrast, the constitutive expression of TLRs in memory B cells allows polyclonal activation of the entire memory pool. Thus, in human B cells TLRs are downstream of BCR and play a role both in the primary response and in the memory phase.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.


Blood ◽  
2011 ◽  
Vol 118 (8) ◽  
pp. 2150-2158 ◽  
Author(s):  
Magdalena A. Berkowska ◽  
Gertjan J. A. Driessen ◽  
Vasilis Bikos ◽  
Christina Grosserichter-Wagener ◽  
Kostas Stamatopoulos ◽  
...  

Abstract Multiple distinct memory B-cell subsets have been identified in humans, but it remains unclear how their phenotypic diversity corresponds to the type of responses from which they originate. Especially, the contribution of germinal center-independent responses in humans remains controversial. We defined 6 memory B-cell subsets based on their antigen-experienced phenotype and differential expression of CD27 and IgH isotypes. Molecular characterization of their replication history, Ig somatic hypermutation, and class-switch profiles demonstrated their origin from 3 different pathways. CD27−IgG+ and CD27+IgM+ B cells are derived from primary germinal center reactions, and CD27+IgA+ and CD27+IgG+ B cells are from consecutive germinal center responses (pathway 1). In contrast, natural effector and CD27−IgA+ memory B cells have limited proliferation and are also present in CD40L-deficient patients, reflecting a germinal center-independent origin. Natural effector cells at least in part originate from systemic responses in the splenic marginal zone (pathway 2). CD27−IgA+ cells share low replication history and dominant Igλ and IgA2 use with gut lamina propria IgA+ B cells, suggesting their common origin from local germinal center-independent responses (pathway 3). Our findings shed light on human germinal center-dependent and -independent B-cell memory formation and provide new opportunities to study these processes in immunologic diseases.


2018 ◽  
Vol 2 ◽  
pp. 97 ◽  
Author(s):  
Luke Muir ◽  
Paul F. McKay ◽  
Velislava N. Petrova ◽  
Oleksiy V. Klymenko ◽  
Sven Kratochvil ◽  
...  

Background:Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be culturedex vivo,allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM+memory B cells.Methods:Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry.Results:The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions:Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.


2018 ◽  
Author(s):  
J. Nechvatalova ◽  
S.J.W. Bartol ◽  
Z. Chovancova ◽  
L. Boon ◽  
M. Vlkova ◽  
...  

One Sentence SummaryHuman B cells with a genetic defect in IGHD develop normally in vivo, and do not have a competitive disadvantage to IgD-expressing B cells for developing into memory B cells.AbstractSurface immunoglobulin D (IgD) is co-expressed with IgM on naive mature B cells. Still, the role of surface IgD remains enigmatic even 50 years after its initial discovery. We here examined the in vivo role of surface IgD in human B-cell homeostasis and antibody responses in four individuals with heterozygous nonsense mutations in IGHD. All IGHD heterozygous individuals had normal numbers of B cells and serum immunoglobulins, and did not show signs of immunodeficiency or immune dysregulation. IgD+ and IgD– naive mature B cells were present in equal numbers and showed similar immunophenotypes, except for decreased expression of CD79b in the IgD– subset. Furthermore, both IgD+ and IgD– naive mature B cells had normal replication histories, similar capacities to differentiate into plasma cells upon in vitro stimulation, and Ig switched memory B cells showed similar levels of somatic hypermutations. Thus human B cells lacking IgD expression develop normally and generate immunological memory in vivo, suggesting that surface IgD might function more restricted in regulating of B-cell activation to specific antigenic structures.


2008 ◽  
Vol 105 (40) ◽  
pp. 15517-15522 ◽  
Author(s):  
Jean L. Scholz ◽  
Jenni E. Crowley ◽  
Mary M. Tomayko ◽  
Natalie Steinel ◽  
Patrick J. O'Neill ◽  
...  

We have used an inhibiting antibody to determine whether preimmune versus antigen-experienced B cells differ in their requisites for BLyS, a cytokine that controls differentiation and survival. Whereas in vivo BLyS inhibition profoundly reduced naïve B cell numbers and primary immune responses, it had a markedly smaller effect on memory B cells and long-lived plasma cells, as well as secondary immune responses. There was heterogeneity within the memory pools, because IgM-bearing memory cells were sensitive to BLyS depletion whereas IgG-bearing memory cells were not, although both were more resistant than naïve cells. There was also heterogeneity within B1 pools, as splenic but not peritoneal B1 cells were diminished by anti-BLyS treatment, yet the number of natural antibody-secreting cells remained constant. Together, these findings show that memory B cells and natural antibody-secreting cells are BLyS-independent and suggest that these pools can be separately manipulated.


2020 ◽  
Author(s):  
Alexander Stewart ◽  
Joseph Ng ◽  
Gillian Wallis ◽  
Vasiliki Tsioligka ◽  
Franca Fraternali ◽  
...  

AbstractSeparation of B cells into different subsets has been useful to understand their different functions in various immune scenarios. In some instances, the subsets defined by phenotypic FACS separation are relatively homogeneous and so establishing the functions associated with them is straightforward. Other subsets, such as the “Double negative” (DN, CD19+CD27-IgD-) population, are more complex with reports of differing functionality which could indicate a heterogeneous population. Recent advances in single-cell techniques enable an alternative route to characterise cells based on their transcriptome. To maximise immunological insight, we need to match prior data from phenotype-based studies with the finer granularity of the single-cell transcriptomic signatures. We also need to be able to define meaningful B cell subsets from single cell analyses performed on PBMCs, where the relative paucity of a B cell signature means that defining B cell subsets within the whole is challenging. Here we provide a reference single-cell dataset based on phenotypically sorted B cells and an unbiased procedure to better classify functional B cell subsets in the peripheral blood, particularly useful in establishing a baseline cellular landscape and in extracting significant changes with respect to this baseline from single-cell datasets. We find 10 different clusters of B cells and applied a novel, geometry-inspired, method to RNA velocity estimates in order to evaluate the dynamical transitions between B cell clusters. This indicated the presence of two main developmental branches of memory B cells. One involves IgM memory cells and two DN subpopulations, culminating in a population thought to be associated with Age related B cells and the extrafollicular response. The other branch involves a third DN cluster which appears to be a precursor of classical memory cells. In addition, we identify a novel DN4 population, which is IgE rich and on its own developmental branch but with links to the classical memory branch.


2017 ◽  
Vol 2 ◽  
pp. 97 ◽  
Author(s):  
Luke Muir ◽  
Paul F. McKay ◽  
Velislava N. Petrova ◽  
Oleksiy V. Klymenko ◽  
Sven Kratochvil ◽  
...  

Background:Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be culturedex vivo,allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM+memory B cells.Methods:Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry.Results:The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions:Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.


Sign in / Sign up

Export Citation Format

Share Document