scholarly journals Predator–Prey Interactions Examined Using Lionfish Spine Puncture Performance

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
K A Galloway ◽  
M E Porter

Synopsis Puncture mechanics can be studied in the context of predator–prey interactions and provide bioinspiration for puncture tools and puncture-resistant materials. Lionfish have a passive puncture system where venomous spines (dorsal, anal, and pelvic), the tool, may embed into a predator’s skin, the target material, during an encounter. To examine predator–prey interactions, we quantified the puncture performance of red lionfish, Pterois volitans, spines in buccal skin from two potential predators and porcine skin, a biological model for human skin. We punctured dorsal, anal, and pelvic lionfish spines into three regions of buccal skin from the black grouper (Mycteroperca bonaci) and the blacktip shark (Carcharhinus limbatus), and we examined spine macro-damage (visible without a microscope) post puncture. Lionfish spines were more effective, based on lower forces measured and less damage incurred, at puncturing buccal skin of groupers compared to sharks. Anal and dorsal spines incurred the most macro-damage during successful fish skin puncture trials, while pelvic spines did not incur any macro-damage. Lionfish spines were not damaged during porcine skin testing. Anal spines required the highest forces, while pelvic spines required intermediate forces to puncture fish skin. Dorsal spines required the lowest forces to puncture fish skins, but often incurred macro-damage of bent tips. All spine regions required similar forces to puncture porcine skin. These data suggest that lionfish spines may be more effective at puncturing humans such as divers than potential fish predators. These results emphasize that puncture performance is ultimately determined by both the puncture tool and target material choice. Lionfish puncture performance varies among spine region, when taking into account both the puncture force and damage sustained by the spine.

1993 ◽  
Vol 50 (6) ◽  
pp. 1279-1288 ◽  
Author(s):  
Martha E. Mather ◽  
Roy A. Stein

In Ohio streams, the crayfish Orconectes rusticus is replacing O. sanborni, and herein we test how predators influence this replacement. In a field survey, crayfish were scarce when fish were abundant, suggesting that predators can adversely affect these prey. In laboratory experiments, we examined underlying mechanisms for this inverse relationship; specifically, we tested how crayfish species, adult aggression, and habitat heterogeneity influenced the predator–prey interaction. In a laboratory stream, smallmouth bass (Micropterus dolomieu) ate similar numbers of equal-sized O. rusticus and O. sanborni, but when sizes mimicked those in the field (i.e., O. rusticus 4 mm > O. sanborni), fewer O. rusticus were eaten. Fish also reduced juvenile activity and behaviors whereas adult aggression increased the frequency of these risky responses. More affected by adult crayfish, O. sanborni should suffer disproportional predation where adults and juveniles interact. Thus, fish predators should increase replacement rates and adult aggression should further accelerate this process. Manifested through crayfish size, both indirect and direct predator effects contribute to the replacement of O. sanborni by O. rusticus.


2017 ◽  
Vol 68 (1) ◽  
pp. 167 ◽  
Author(s):  
M. I. Gómez ◽  
C. M. Fuentes

The aim of the present study was to develop a method to unequivocally detect pre-flexion fish larvae in the digestive tracts of fish predators, even several hours after their ingestion. For this purpose, we evaluated larval mortality and the quality of the marks generated in sagitta otoliths after 0.5- or 2-h immersion in 50–800mg L–1 alizarin red S stain. The optimal condition (2h, 200mg L–1) was chosen to stain Prochilodus lineatus larvae, which were offered to single predators at 5 or 12 days after marking (DAM). The otoliths were searched in the digestive tract of predators killed 1–17h after ingestion of the prey, and were then examined for mark presence. Otolith recovery rates were high (>70%) and mark detection was above 80% up to 3h after ingestion, but even after 9h, 20–40% of the otoliths were recovered, with mark detection levels of 65%. A higher number of DAM was associated with a higher success in otolith recovery and mark detection. Otolith marking constitutes a single and inexpensive technique that could be applied in both laboratory and field experimental studies of predator–prey interactions.


2013 ◽  
Vol 9 (3) ◽  
pp. 20121193 ◽  
Author(s):  
Takefumi Nakazawa ◽  
Shin-ya Ohba ◽  
Masayuki Ushio

As predator–prey interactions are inherently size-dependent, predator and prey body sizes are key to understanding their feeding relationships. To describe predator–prey size relationships (PPSRs) when predators can consume prey larger than themselves, we conducted field observations targeting three aquatic hemipteran bugs, and assessed their body masses and those of their prey for each hunting event. The data revealed that their PPSR varied with predator size and species identity, although the use of the averaged sizes masked these effects. Specifically, two predators had slightly decreased predator–prey mass ratios (PPMRs) during growth, whereas the other predator specialized on particular sizes of prey, thereby showing a clear positive size–PPMR relationship. We discussed how these patterns could be different from fish predators swallowing smaller prey whole.


Author(s):  
Kin Lam

The energy of moving ions in solid is dependent on the electronic density as well as the atomic structural properties of the target material. These factors contribute to the observable effects in polycrystalline material using the scanning ion microscope. Here we outline a method to investigate the dependence of low velocity proton stopping on interatomic distances and orientations.The interaction of charged particles with atoms in the frame work of the Fermi gas model was proposed by Lindhard. For a system of atoms, the electronic Lindhard stopping power can be generalized to the formwhere the stopping power function is defined as


Author(s):  
A. M. Bradshaw

X-ray photoelectron spectroscopy (XPS or ESCA) was not developed by Siegbahn and co-workers as a surface analytical technique, but rather as a general probe of electronic structure and chemical reactivity. The method is based on the phenomenon of photoionisation: The absorption of monochromatic radiation in the target material (free atoms, molecules, solids or liquids) causes electrons to be injected into the vacuum continuum. Pseudo-monochromatic laboratory light sources (e.g. AlKα) have mostly been used hitherto for this excitation; in recent years synchrotron radiation has become increasingly important. A kinetic energy analysis of the so-called photoelectrons gives rise to a spectrum which consists of a series of lines corresponding to each discrete core and valence level of the system. The measured binding energy, EB, given by EB = hv−EK, where EK is the kineticenergy relative to the vacuum level, may be equated with the orbital energy derived from a Hartree-Fock SCF calculation of the system under consideration (Koopmans theorem).


Author(s):  
Werner P. Rehbach ◽  
Peter Karduck

In the EPMA of soft x rays anomalies in the background are found for several elements. In the literature extremely high backgrounds in the region of the OKα line are reported for C, Al, Si, Mo, and Zr. We found the same effect also for Boron (Fig. 1). For small glancing angles θ, the background measured using a LdSte crystal is significantly higher for B compared with BN and C, although the latter are of higher atomic number. It would be expected, that , characteristic radiation missing, the background IB (bremsstrahlung) is proportional Zn by variation of the atomic number of the target material. According to Kramers n has the value of unity, whereas Rao-Sahib and Wittry proposed values between 1.12 and 1.38 , depending on Z, E and Eo. In all cases IB should increase with increasing atomic number Z. The measured values are in discrepancy with the expected ones.


Author(s):  
K. F. Russell ◽  
L. L. Horton

Beams of heavy ions from particle accelerators are used to produce radiation damage in metal alloys. The damaged layer extends several microns below the surface of the specimen with the maximum damage and depth dependent upon the energy of the ions, type of ions, and target material. Using 4 MeV heavy ions from a Van de Graaff accelerator causes peak damage approximately 1 μm below the specimen surface. To study this area, it is necessary to remove a thickness of approximately 1 μm of damaged metal from the surface (referred to as “sectioning“) and to electropolish this region to electron transparency from the unirradiated surface (referred to as “backthinning“). We have developed electropolishing techniques to obtain electron transparent regions at any depth below the surface of a standard TEM disk. These techniques may be applied wherever TEM information is needed at a specific subsurface position.


Author(s):  
László G. Kömüves ◽  
Donna S. Turner ◽  
Kathy S. McKee ◽  
Buford L. Nichols ◽  
Julian P. Heath

In this study we used colloidal gold probes to detect the intracellular localization of colostral immunoglobulins in intestinal epithelial cells of newborn piglets.Tissues were obtained from non-suckled newborn and suckled piglets aged between 1 hour to 1 month. Samples were fixed in 2.5 % glutaraldehyde, osmicated and embedded into Spurr’s resin. Thin (80 nm) sections were etched with 5% sodium ethoxide for 5 min, washed and treated with 4 % sodium-m-periodate in distilled water for 30 min. The sections were then first incubated with blocking buffer (2 % BSA, 0.25 % fish skin gelatin, 0.5 % Tween 20 in 10 mM Trizma buffer, pH=7.4 containing 500 mM NaCl) for 30 min followed by the immunoreagents diluted in the same buffer, 1 hr each. For the detection of pig immunoglobulins a rabbit anti-pig IgG antiserum was used followed by goat anti-rabbit IgG-Au10 or protein A-Au15 probes.


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


Sign in / Sign up

Export Citation Format

Share Document