scholarly journals A global synthesis of the correspondence between epizoic barnacles and their sea turtle hosts

Author(s):  
John D Zardus

Abstract Barnacles that are obligate epizoites of sea turtles are not parasites in the traditional sense. However, they can impair their hosts in some instances, disqualifying the association as strictly commensal. Characterizing these interactions requires knowing which epibionts pair with which hosts, but records of barnacles from sea turtles are scattered and symbiont/host match-ups remain equivocal. The objective of this study was to collate global records on the occurrence of barnacles with sea turtles and describe each species pair quantitatively. Records reporting barnacles with sea turtles were searched spanning the last 167 years, including grey literature, and findings were enumerated for 30,580 individual turtles to evaluate prevalence. The data were summarized globally as well as subdivided across six geographic regions to assess constancy of the affiliations. Patterns of partnering were visualized by hierarchical clustering analysis of percent occurrence values for each barnacle/turtle pair and the relative selectivity of each symbiont and susceptibility of each host were evaluated. After adjusting for synonymies and taxonomic inaccuracies, the occurrence of 16 nominal species of barnacles were recorded from all seven extant sea turtle species. Mostly, barnacles were not specific to single turtle species, partnering on average with three hosts each. Neither were barnacles entirely host-consistent among regions. Three barnacles were common to all sea turtles except leatherbacks. The most common, widespread, and least selective barnacle was Chelonibia testudinaria, the only symbiont of all turtles. Excluding single-record occurrences, the barnacle Stomatolepas transversa was the only single-host associate of any hard-shell sea turtle (the green sea turtle) and Platylepas coriacea and Stomatolepas dermochelys were exclusive associates of leatherback sea turtles. Green sea turtles were the most vulnerable to epibiosis, hosting 13 barnacle species and Kemp’s ridley sea turtles were the least, hosting three. Geographically, there was an average of nine barnacle species per world region, with diversity highest in the Pacific Ocean (12 species) and lowest in the Mediterranean Sea (six species). It is paradoxical that the flexibility of barnacles for multiple host species contrasts with their overall strict specificity for sea turtles, with each symbiont occupying a virtually unique suite of hosts.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Eric T. Anderson ◽  
Larry J. Minter ◽  
Elsburgh O. Clarke ◽  
Raymond M. Mroch ◽  
Jean F. Beasley ◽  
...  

In mammals, lipemic blood from sampling too soon after an animal feeds can have substantial effects on biochemical values. Plasma biochemical values in reptiles may be affected by species, age, season, and nutritional state. However, fasting status is not routinely considered when sampling reptile blood. In this paper, we evaluated 2-hour postprandial blood collection in two sea turtle species to investigate the effects of feeding on hematological and plasma biochemical values. Feeding had no significant effects on hematological values in either species, nor did it have an effect on plasma biochemistry values in Kemp's ridley sea turtles. In postprandial green turtles, total protein, albumin, ALP, AST, ALT, amylase, and cholesterol increased significantly, and chloride decreased significantly. Although statistically significant changes were observed, the median percent differences between pre- and postprandial values did not exceed 10% for any of these analytes and would not likely alter the clinical interpretation.


2019 ◽  
Vol 15 (6) ◽  
pp. 20190248 ◽  
Author(s):  
Edwin R. Price ◽  
Paul R. Sotherland ◽  
Bryan P. Wallace ◽  
James R. Spotila ◽  
Edward M. Dzialowski

The internesting interval separates successive clutches of sea turtle eggs, and its duration varies both among and within species. Here, we review the potential physiological limits to this interval, and develop the hypothesis that desalination capacity limits the internesting interval owing to the requirement for water deposition in eggs. Sea turtles deposit 1–4 kg of water per clutch in egg albumen; for most species, this represents about 2% of adult body mass. We calculate how quickly turtles can recover this water by estimating maximal salt excretion rates, metabolic water production and urinary losses. From this water balance perspective, the ‘water-limitation’ hypothesis is plausible for green turtles but not for leatherbacks. Some plasma biochemistry studies indicate dehydration in sea turtles during the nesting season, although this is not a universal finding and these data have rarely been collected during the internesting interval itself. There is mixed support for a trade-off between clutch size and the length of the interval. We conclude that the ‘water-limitation’ hypothesis is plausible for most sea turtle species, but requires direct experimentation.


2017 ◽  
Vol 98 (6) ◽  
pp. 1525-1531 ◽  
Author(s):  
Suzana Machado Guimarães ◽  
Davi Castro Tavares ◽  
Cassiano Monteiro-Neto

The five sea turtle species occurring in Brazilian waters are susceptible to threats, including incidental catches by fisheries. Studies on incidental captures in fishing gears are the main focus of several conservation actions due to high sea turtle fishery mortality worldwide. This study provides the first evaluation of incidental sea turtle catches by industrial bottom trawl fisheries operating in Brazilian waters. Four twin-trawler vessels were monitored between July 2010 and December 2011 by captains who voluntarily completed logbooks. Forty-four turtles were captured during the 1996 tows (8313 fishing hours), resulting in a catch of 5.3 ± 0.8 turtles per 1000 h per unit effort. Captured species included the loggerhead turtle (Caretta caretta, 22 individuals), olive ridley turtles (Lepidochelys olivacea, 21 individuals) and one green turtle (Chelonia mydas). Water depth was the only variable that significantly affected sea turtle captures according to Generalized Linear Models. The capture rates reported in this study ranked sixth in relation to other published studies of similar fisheries occurring worldwide. Considering the importance of this region for sea turtles, the increasing evidence of sea turtle mortality and the goals of the National Action Plan for Conservation of Sea Turtles in Brazil, it is essential to identify the main threats towards these animals and propose mitigating solutions to reduce sea turtle mortality induced by fishing activities. This study provides results that may guide future research and goals in meeting sea turtle conservation strategies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246241
Author(s):  
David P. Robinson ◽  
Kevin Hyland ◽  
Gerhard Beukes ◽  
Abdulkareem Vettan ◽  
Aneeshkumar Mabadikate ◽  
...  

The rehabilitation of wildlife can contribute directly to the conservation of threatened species by helping to maintain wild populations. This study focused on determining the post-rehabilitation survival and spatial ecology of sea turtles and on comparing the movements of individuals with flipper amputations (amputees) to non-amputee animals. Our aims were to assess whether rehabilitated sea turtles survive after release, to compare and contrast the movement characteristics of the different species of sea turtles we tracked, and to examine whether amputees and non-amputees within species behaved similarly post-release. Twenty-six rehabilitated sea turtles from four species, including hawksbill Eretmochelys imbricata (n = 12), loggerhead Caretta caretta (n = 11), green Chelonia mydas (n = 2), and olive ridley Lepidochelys olivacea (n = 1) sea turtles from the United Arab Emirates were fitted with satellite tags before release. Rehabilitation times ranged from 89 to 817 days (mean 353 ± 237 days). Post-release movements and survival were monitored for 8 to 387 days (mean 155 ± 95 days) through satellite tracking. Tag data suggested that three tracked sea turtles died within four days of release, one after 27 days, and one after 192 days from what are thought to be anthropogenic factors unrelated to their pre-rehabilitation ailments. We then compared habitat use and movement characteristics among the different sea turtle species. Although half of all turtles crossed one or more international boundaries, dispersal varied among species. Loggerhead turtles had a high dispersal, with 80% crossing an international boundary, while hawksbill turtles displayed higher post-release residency, with 66% remaining within UAE territorial waters. Amputee turtles moved similarly to non-amputee animals of the same species. Loggerhead turtles travelled faster (mean ± sd = 15.3 ± 8 km/day) than hawksbill turtles (9 ± 7 km/day). Both amputee and non-amputee sea turtles within a species moved similarly. Our tracking results highlight that rehabilitated sea turtles, including amputees, can successfully survive in the wild following release for up to our ~one-year monitoring time therefore supporting the suitability for release of sea turtles that have recovered from major injuries such as amputations. However, more broadly, the high mortality from anthropogenic factors in the Arabian Gulf region is clearly a serious issue and conservation challenge.


2021 ◽  
Vol 7 ◽  
Author(s):  
Margaret M. Lamont ◽  
Darren Johnson

The neritic environment is rich in resources and as such plays a crucial role as foraging habitat for multi-species marine assemblages, including sea turtles. However, this habitat also experiences a wide array of anthropogenic threats. To prioritize conservation funds, targeting areas that support multi-species assemblages is ideal. This is particularly important in the Gulf of Mexico where restoration actions are currently ongoing following the Deepwater Horizon oil spill. To better understand these areas in the Gulf of Mexico, we characterized two multi-species aggregations of sea turtles captured in different neritic habitats. We described species composition and size classes of turtles, and calculated body condition index for 642 individuals of three species captured from 2011 to 2019: 13.6% loggerheads (Caretta caretta), 44.9% Kemp’s ridleys (Lepidochelys kempii) and 41.4% green turtles (Chelonia mydas). Species composition differed between the two sites with more loggerheads captured in seagrass and a greater proportion of green turtles captured in sand bottom. Turtles in sand bottom were smaller and weighed less than those captured in seagrass. Although small and large turtles were captured at both sites, the proportions differed between sites. Body condition index of green turtles was lower in sand habitat than seagrass habitat; there was no difference for Kemp’s ridleys or loggerheads. In general, smaller green turtles had a higher body condition index than larger green turtles. We have identified another habitat type used by juvenile sea turtle species in the northern Gulf of Mexico. In addition, we highlight the importance of habitat selection by immature turtles recruiting from the oceanic to the neritic environment, particularly for green turtles.


EDIS ◽  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Analisa Duran ◽  
Ruth Francis-Floyd ◽  
Maia Patterson Mcguire ◽  
Iskande Larkin

Florida’s coastline provides critical habitat for sea turtle nesting, as it has for millions of years. Throughout the state, three of the seven species of sea turtles in the world have significant nesting populations. Loggerhead, green, and leatherback sea turtles use Florida’s beaches to lay nests each year. This publication provides information on the identification, nesting characteristics, and abundance of each of the common sea turtle species who nest in Florida.


2019 ◽  
Vol 29 ◽  
pp. 17-31 ◽  
Author(s):  
HA Broadbent ◽  
SE Grasty ◽  
RF Hardy ◽  
MM Lamont ◽  
KM Hart ◽  
...  

The use of marine offshore benthic habitats by sea turtles is poorly characterized due to the difficulty of obtaining in situ data. Understanding benthic habitat use that is important to the species’ reproduction, foraging, and migrations is critical for guiding management decisions. A towed camera-based assessment survey system (C-BASS) equipped with environmental sensors was used to characterize and assess benthic habitats on the West Florida Shelf (WFS) from 2014 to 2018. During these cruises, sea turtles were opportunistically observed during the surveys, and critical in situ data such as spatiotemporal information, species identification, habitat use, behavior, and environmental data were collected and evaluated. In total, 79 sea turtles were observed during 97 transects of approximately 2700 km of seafloor, which was recorded on 380 h of video. Several sea turtle species were spotted within the WFS, including loggerhead Caretta caretta, Kemp’s ridley Lepidochelys kempii, and green turtles Chelonia mydas. These opportunistic sightings revealed an area of high use on the WFS, an anthropogenic structure known as the Gulfstream natural gas pipeline (GSPL). C-BASS survey results suggest that 2 sea turtle species (C. caretta and L. kempii) utilize this artificial structure primarily as a resting area. We emphasize the importance of combining habitat mapping techniques (towed underwater video and multibeam bathymetry/backscatter) with tracking technology to better understand the fine-scale habitat use of sea turtles.


2021 ◽  
Vol 2 ◽  
Author(s):  
Helen Pheasey ◽  
George Glen ◽  
Nicole L. Allison ◽  
Luis G. Fonseca ◽  
Didiher Chacón ◽  
...  

Estimates of illegal wildlife trade vary significantly and are often based on incomplete datasets, inferences from CITES permits or customs seizures. As a result, annual global estimates of illegal wildlife trade can vary by several billions of US dollars. Translating these figures into species extraction rates is equally challenging, and estimating illegal take accurately is not achievable for many species. Due to their nesting strategies that allow for census data collection, sea turtles offer an exception. On the Caribbean coast of Costa Rica, three sea turtle species (leatherback, Dermochelys coriacea; green, Chelonia mydas; and hawksbill, Eretmochelys imbricata) are exploited by poachers. Despite the consumption of turtle eggs and meat being illegal, they are consumed as a cultural food source and seasonal treat. Conservation programmes monitor nesting beaches, collect abundance data and record poaching events. Despite the availability of robust long-term datasets, quantifying the rate of poaching has yet to be undertaken. Using data from the globally important nesting beach, Tortuguero, as well as beaches Playa Norte and Pacuare on the Caribbean coast of Costa Rica, we modelled the spatial and temporal distribution of poaching of the three sea turtle species. Here, we present data from 2006 to 2019 on a stretch of coastline covering c.37 km. We identified poaching hotspots that correlated with populated areas. While the poaching hotspots persisted over time, we found poaching is declining at each of our sites. However, we urge caution when interpreting this result as the impact of poaching varies between species. Given their low abundance on these beaches, the poaching pressure on leatherback and hawksbill turtles is far greater than the impact on the abundant green turtles. We attribute the decline in poaching to supply-side conservation interventions in place at these beaches. Finally, we highlight the value of data sharing and collaborations between conservation NGOs.


2020 ◽  
Vol 160 (9) ◽  
pp. 531-538
Author(s):  
Caroline R.D. Machado ◽  
Larissa Glugoski ◽  
Camila Domit ◽  
Marcela B. Pucci ◽  
Daphne W. Goldberg ◽  
...  

Sea turtles are considered flagship species for marine biodiversity conservation and are considered to be at varying risk of extinction globally. Cases of hybridism have been reported in sea turtles, but chromosomal analyses are limited to classical karyotype descriptions and a few molecular cytogenetic studies. In order to compare karyotypes and understand evolutive mechanisms related to chromosome dif­ferentiation in this group, <i>Chelonia mydas</i>, <i>Caretta caretta</i>, <i>Eretmochelys imbricata</i>, and <i>Lepidochelys olivacea</i> were cytogenetically characterized in the present study. When the obtained cytogenetic data were compared with the putative ancestral Cryptodira karyotype, the studied species showed the same diploid number (2n) of 56 chromosomes, with some variations in chromosomal morphology (karyotypic formula) and minor changes in longitudinal band locations. In situ localization using a 18S ribosomal DNA probe indicated a homeologous microchromosome pair bearing a 45S ribosomal DNA locus and size heteromorphism in all 4 species. Interstitial telomeric sites were identified in a microchromosome pair in <i>C. mydas</i> and <i>C. caretta</i>. The data showed that interspecific variations occurred in chromosomal sets among the Cheloniidae species, in addition to other Cryptodira karyotypes. These variations generated lineage-specific karyotypic diversification in sea turtles, which will have considerable implications for hybrid recognition and for the study, the biology, ecology, and evolutionary history of regional and global populations. Furthermore, we demonstrated that some chromosome rearrangements occurred in sea turtle species, which is in conflict with the hypothesis of conserved karyotypes in this group.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Frederic Vandeperre ◽  
Hugo Parra ◽  
Christopher K. Pham ◽  
Miguel Machete ◽  
Marco Santos ◽  
...  

Abstract After hatching, juveniles of most sea turtle species undertake long migrations across ocean basins and remain in oceanic habitats for several years. Assessing population abundance and demographic parameters during this oceanic stage is challenging. Two long-recognized deficiencies in population assessment are (i) reliance on trends in numbers of nests or reproductive females at nesting beaches and (ii) ignorance of factors regulating recruitment to the early oceanic stage. To address these critical gaps, we examined 15 years of standardized loggerhead sighting data collected opportunistically by fisheries observers in the Azores archipelago. From 2001 to 2015, 429 loggerheads were sighted during 67,922 km of survey effort. We used a model-based approach to evaluate the influence of environmental factors and present the first estimates of relative abundance of oceanic-stage juvenile sea turtles. During this period, relative abundance of loggerheads in the Azores tracked annual nest abundance at source rookeries in Florida when adjusted for a 3-year lag. This concurrence of abundance patterns indicates that recruitment to the oceanic stage is more dependent on nest abundance at source rookeries than on stochastic processes derived from short term climatic variability, as previously believed.


Sign in / Sign up

Export Citation Format

Share Document